Feature engineering for electricity load forecasting#
The purpose of this notebook is to demonstrate how to use skrub and
polars to perform feature engineering for electricity load forecasting.
We will build a set of features (and targets) from different data sources:
Historical weather data for 10 medium to large urban areas in France;
Holidays and standard calendar features for France;
Historical electricity load data for the whole of France.
All these data sources cover a time range from March 23, 2021 to May 31, 2025.
Since our maximum forecasting horizon is 24 hours, we consider that the future weather data is known at a chosen prediction time. Similarly, the holidays and calendar features are known at prediction time for any point in the future.
Therefore, exogenous features derived from the weather and calendar data can be used to engineer “future covariates”. Since the load data is our prediction target, we will can also use it to engineer “past covariates” such as lagged features and rolling aggregations. The future values of the load data (with respect to the prediction time) are used as targets for the forecasting model.
Environment setup#
We need to install some extra dependencies for this notebook if needed (when running jupyterlite).
%pip install -q https://pypi.anaconda.org/ogrisel/simple/polars/1.24.0/polars-1.24.0-cp39-abi3-emscripten_3_1_58_wasm32.whl
%pip install -q skrub altair holidays plotly nbformat
ERROR: polars-1.24.0-cp39-abi3-emscripten_3_1_58_wasm32.whl is not a supported wheel on this platform.
Note: you may need to restart the kernel to use updated packages.
Note: you may need to restart the kernel to use updated packages.
The following 3 imports are only needed to workaround some limitations when using polars in a pyodide/jupyterlite notebook.
TODO: remove those workarounds once pyodide enables again the package: xref: pyodide/pyodide-recipes
import tzdata  # noqa: F401
import pandas as pd
from pyarrow.parquet import read_table
import altair
import polars as pl
import skrub
from pathlib import Path
import holidays
Shared time range for all historical data sources#
Let’s define a hourly time range from March 23, 2021 to May 31, 2025 that will be used to join the electricity load data and the weather data. The time range is in UTC timezone to avoid any ambiguity when joining with the weather data that is also in UTC.
We wrap the resulting polars dataframe in a skrub expression to benefit
from the built-in skrub.TableReport display in the notebook. Using the
skrub expression system will also be useful for other reasons: all
operations in this notebook are chained together in a directed
acyclic graph that is automatically tracked by skrub. This allows us to
extract the resulting pipeline and apply it to new data later on, exactly
like a trained scikit-learn pipeline. The main difference is that we do so
incrementally and while eagerly executing and inspecting the results of each
step as is customary when working with dataframe libraries such as polars and
pandas in Jupyter notebooks.
historical_data_start_time = skrub.var(
    "historical_data_start_time", pl.datetime(2021, 3, 23, hour=0, time_zone="UTC")
)
historical_data_end_time = skrub.var(
    "historical_data_end_time", pl.datetime(2025, 5, 31, hour=23, time_zone="UTC")
)
@skrub.deferred
def build_historical_time_range(
    historical_data_start_time,
    historical_data_end_time,
    time_interval="1h",
    time_zone="UTC",
):
    """Define an historical time range shared by all data sources."""
    return pl.DataFrame().with_columns(
        pl.datetime_range(
            start=historical_data_start_time,
            end=historical_data_end_time,
            time_zone=time_zone,
            interval=time_interval,
        ).alias("time"),
    )
time = build_historical_time_range(historical_data_start_time, historical_data_end_time)
time
Show graph
| time | 
|---|
| 2021-03-23 00:00:00+00:00 | 
| 2021-03-23 01:00:00+00:00 | 
| 2021-03-23 02:00:00+00:00 | 
| 2021-03-23 03:00:00+00:00 | 
| 2021-03-23 04:00:00+00:00 | 
| 2025-05-31 19:00:00+00:00 | 
| 2025-05-31 20:00:00+00:00 | 
| 2025-05-31 21:00:00+00:00 | 
| 2025-05-31 22:00:00+00:00 | 
| 2025-05-31 23:00:00+00:00 | 
time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    36,744 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
  
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
If you run the above locally with pydot and graphviz installed, you can
visualize the expression graph of the time variable by expanding the “Show
graph” button.
Let’s now load the data records for the time range defined above.
To avoid network issues when running this notebook, the necessary data files
have already been downloaded and saved in the datasets folder.
data_source_folder = skrub.var("data_source_folder", "../datasets")
for data_file in sorted(Path(data_source_folder.skb.eval()).iterdir()):
    print(data_file)
../datasets/README.md
../datasets/Total Load - Day Ahead _ Actual_202101010000-202201010000.csv
../datasets/Total Load - Day Ahead _ Actual_202201010000-202301010000.csv
../datasets/Total Load - Day Ahead _ Actual_202301010000-202401010000.csv
../datasets/Total Load - Day Ahead _ Actual_202401010000-202501010000.csv
../datasets/Total Load - Day Ahead _ Actual_202501010000-202601010000.csv
../datasets/weather_bayonne.parquet
../datasets/weather_brest.parquet
../datasets/weather_lille.parquet
../datasets/weather_limoges.parquet
../datasets/weather_lyon.parquet
../datasets/weather_marseille.parquet
../datasets/weather_nantes.parquet
../datasets/weather_paris.parquet
../datasets/weather_strasbourg.parquet
../datasets/weather_toulouse.parquet
We define a list of 10 medium to large urban areas to approximately cover most regions in France with a slight focus on most populated regions that are likely to drive electricity demand.
city_names = skrub.var(
    "city_names",
    [
        "paris",
        "lyon",
        "marseille",
        "toulouse",
        "lille",
        "limoges",
        "nantes",
        "strasbourg",
        "brest",
        "bayonne",
    ],
)
@skrub.deferred
def load_weather_data(time, city_names, data_source_folder):
    """Load and horizontal stack historical weather forecast data for each city."""
    all_city_weather = time
    for city_name in city_names:
        all_city_weather = all_city_weather.join(
            pl.from_arrow(
                read_table(f"{data_source_folder}/weather_{city_name}.parquet")
            )
            .with_columns([pl.col("time").dt.cast_time_unit("us")])
            .rename(lambda x: x if x == "time" else "weather_" + x + "_" + city_name),
            on="time",
        )
    return all_city_weather
all_city_weather = load_weather_data(time, city_names, data_source_folder)
all_city_weather
Show graph
| time | weather_temperature_2m_paris | weather_precipitation_paris | weather_wind_speed_10m_paris | weather_cloud_cover_paris | weather_soil_moisture_1_to_3cm_paris | weather_relative_humidity_2m_paris | weather_temperature_2m_lyon | weather_precipitation_lyon | weather_wind_speed_10m_lyon | weather_cloud_cover_lyon | weather_soil_moisture_1_to_3cm_lyon | weather_relative_humidity_2m_lyon | weather_temperature_2m_marseille | weather_precipitation_marseille | weather_wind_speed_10m_marseille | weather_cloud_cover_marseille | weather_soil_moisture_1_to_3cm_marseille | weather_relative_humidity_2m_marseille | weather_temperature_2m_toulouse | weather_precipitation_toulouse | weather_wind_speed_10m_toulouse | weather_cloud_cover_toulouse | weather_soil_moisture_1_to_3cm_toulouse | weather_relative_humidity_2m_toulouse | weather_temperature_2m_lille | weather_precipitation_lille | weather_wind_speed_10m_lille | weather_cloud_cover_lille | weather_soil_moisture_1_to_3cm_lille | weather_relative_humidity_2m_lille | weather_temperature_2m_limoges | weather_precipitation_limoges | weather_wind_speed_10m_limoges | weather_cloud_cover_limoges | weather_soil_moisture_1_to_3cm_limoges | weather_relative_humidity_2m_limoges | weather_temperature_2m_nantes | weather_precipitation_nantes | weather_wind_speed_10m_nantes | weather_cloud_cover_nantes | weather_soil_moisture_1_to_3cm_nantes | weather_relative_humidity_2m_nantes | weather_temperature_2m_strasbourg | weather_precipitation_strasbourg | weather_wind_speed_10m_strasbourg | weather_cloud_cover_strasbourg | weather_soil_moisture_1_to_3cm_strasbourg | weather_relative_humidity_2m_strasbourg | weather_temperature_2m_brest | weather_precipitation_brest | weather_wind_speed_10m_brest | weather_cloud_cover_brest | weather_soil_moisture_1_to_3cm_brest | weather_relative_humidity_2m_brest | weather_temperature_2m_bayonne | weather_precipitation_bayonne | weather_wind_speed_10m_bayonne | weather_cloud_cover_bayonne | weather_soil_moisture_1_to_3cm_bayonne | weather_relative_humidity_2m_bayonne | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2021-03-23 00:00:00+00:00 | 6.41 | 3.60 | 61.0 | 2.79 | 10.2 | 77.0 | 11.1 | 10.5 | 49.0 | 5.83 | 7.79 | 73.0 | 4.65 | 6.64 | 86.0 | -0.349 | 5.00 | 98.0 | 3.03 | 6.85 | 83.0 | 4.44 | 4.55 | 81.0 | 4.63 | 10.1 | 94.0 | 4.35 | 6.49 | 91.0 | ||||||||||||||||||||||||||||||
| 2021-03-23 01:00:00+00:00 | 6.01 | 0.00 | 3.55 | 6.00 | 62.0 | 2.38 | 0.00 | 8.94 | 6.00 | 78.0 | 10.7 | 0.00 | 11.2 | 0.00 | 50.0 | 5.28 | 0.00 | 6.70 | 5.00 | 74.0 | 4.30 | 0.00 | 7.10 | 22.0 | 88.0 | -0.899 | 0.00 | 5.15 | 10.0 | 98.0 | 2.63 | 0.00 | 9.42 | 7.00 | 81.0 | 3.64 | 0.00 | 4.21 | 66.0 | 84.0 | 5.03 | 0.00 | 11.2 | 6.00 | 95.0 | 3.90 | 0.00 | 5.48 | 19.0 | 92.0 | ||||||||||
| 2021-03-23 02:00:00+00:00 | 5.71 | 0.00 | 3.42 | 5.00 | 64.0 | 1.99 | 0.00 | 6.92 | 12.0 | 79.0 | 10.3 | 0.00 | 11.6 | 0.00 | 51.0 | 4.73 | 0.00 | 6.29 | 0.00 | 75.0 | 4.05 | 0.00 | 7.42 | 72.0 | 89.0 | -1.50 | 0.00 | 5.15 | 12.0 | 98.0 | 2.28 | 0.00 | 10.4 | 100. | 81.0 | 3.04 | 0.00 | 4.55 | 88.0 | 87.0 | 5.08 | 0.00 | 11.0 | 6.00 | 94.0 | 3.65 | 0.00 | 5.40 | 96.0 | 92.0 | ||||||||||
| 2021-03-23 03:00:00+00:00 | 5.36 | 0.00 | 3.24 | 11.0 | 65.0 | 1.63 | 0.00 | 5.40 | 84.0 | 79.0 | 9.93 | 0.00 | 11.6 | 0.00 | 51.0 | 4.33 | 0.00 | 5.51 | 0.00 | 75.0 | 3.80 | 0.00 | 7.99 | 73.0 | 90.0 | -1.95 | 0.00 | 5.32 | 17.0 | 98.0 | 1.78 | 0.00 | 10.5 | 100. | 85.0 | 2.74 | 0.00 | 4.69 | 100. | 88.0 | 4.63 | 0.00 | 10.5 | 5.00 | 93.0 | 3.40 | 0.00 | 5.09 | 67.0 | 92.0 | ||||||||||
| 2021-03-23 04:00:00+00:00 | 5.06 | 0.00 | 3.32 | 11.0 | 66.0 | 1.54 | 0.00 | 4.69 | 100. | 79.0 | 9.68 | 0.00 | 11.4 | 0.00 | 52.0 | 3.98 | 0.00 | 4.90 | 0.00 | 76.0 | 3.45 | 0.00 | 7.29 | 68.0 | 90.0 | -2.10 | 0.00 | 5.99 | 24.0 | 98.0 | 1.43 | 0.00 | 10.2 | 87.0 | 90.0 | 2.44 | 0.00 | 4.45 | 100. | 88.0 | 4.43 | 0.00 | 10.5 | 5.00 | 92.0 | 3.10 | 0.00 | 5.69 | 12.0 | 92.0 | ||||||||||
| 2025-05-31 19:00:00+00:00 | 24.3 | 0.100 | 9.01 | 100. | 0.268 | 60.0 | 21.9 | 0.00 | 3.55 | 100. | 0.274 | 64.0 | 19.9 | 0.00 | 10.5 | 0.00 | 0.139 | 87.0 | 29.3 | 0.00 | 6.99 | 7.00 | 0.208 | 45.0 | 24.0 | 0.00 | 14.4 | 100. | 0.267 | 59.0 | 25.6 | 0.00 | 10.6 | 19.0 | 0.157 | 53.0 | 21.7 | 0.00 | 12.2 | 100. | 0.173 | 54.0 | 19.9 | 0.00 | 10.7 | 84.0 | 0.315 | 79.0 | 17.5 | 0.00 | 12.1 | 5.00 | 0.168 | 73.0 | 18.8 | 0.00 | 12.1 | 100. | 0.238 | 83.0 | 
| 2025-05-31 20:00:00+00:00 | 23.4 | 0.00 | 9.61 | 100. | 0.269 | 62.0 | 21.6 | 0.00 | 2.55 | 80.0 | 0.273 | 72.0 | 19.7 | 0.00 | 6.62 | 100. | 0.139 | 87.0 | 27.4 | 0.00 | 5.40 | 100. | 0.208 | 54.0 | 21.4 | 0.00 | 13.0 | 100. | 0.267 | 61.0 | 23.3 | 0.00 | 8.65 | 23.0 | 0.156 | 66.0 | 20.4 | 0.00 | 10.3 | 100. | 0.173 | 58.0 | 20.1 | 0.00 | 6.29 | 94.0 | 0.306 | 75.0 | 16.3 | 0.00 | 9.11 | 99.0 | 0.168 | 77.0 | 18.5 | 0.00 | 11.6 | 100. | 0.239 | 84.0 | 
| 2025-05-31 21:00:00+00:00 | 22.5 | 0.00 | 13.9 | 100. | 0.271 | 65.0 | 21.1 | 0.00 | 2.55 | 71.0 | 0.273 | 76.0 | 17.9 | 0.00 | 7.39 | 100. | 0.139 | 96.0 | 26.0 | 0.00 | 4.61 | 6.00 | 0.210 | 59.0 | 21.1 | 0.00 | 15.5 | 100. | 0.267 | 61.0 | 21.6 | 0.00 | 7.64 | 100. | 0.155 | 73.0 | 19.3 | 0.00 | 6.49 | 100. | 0.174 | 63.0 | 19.4 | 0.00 | 4.35 | 94.0 | 0.303 | 78.0 | 15.5 | 0.00 | 7.56 | 93.0 | 0.169 | 84.0 | 18.2 | 0.00 | 10.1 | 100. | 0.239 | 84.0 | 
| 2025-05-31 22:00:00+00:00 | 21.0 | 0.00 | 9.69 | 95.0 | 0.271 | 63.0 | 20.7 | 0.00 | 3.62 | 12.0 | 0.273 | 80.0 | 17.6 | 0.00 | 4.69 | 100. | 0.139 | 96.0 | 24.6 | 0.00 | 3.40 | 100. | 0.211 | 71.0 | 18.6 | 0.00 | 10.4 | 38.0 | 0.267 | 68.0 | 20.3 | 0.00 | 5.40 | 100. | 0.155 | 81.0 | 18.5 | 0.00 | 6.73 | 100. | 0.174 | 75.0 | 19.4 | 0.00 | 3.10 | 100. | 0.300 | 80.0 | 15.6 | 0.00 | 9.00 | 100. | 0.170 | 82.0 | 17.6 | 0.00 | 4.45 | 100. | 0.240 | 90.0 | 
| 2025-05-31 23:00:00+00:00 | 20.0 | 0.00 | 10.3 | 90.0 | 0.272 | 64.0 | 20.0 | 0.00 | 3.26 | 63.0 | 0.273 | 83.0 | 17.6 | 0.00 | 2.60 | 100. | 0.139 | 96.0 | 23.5 | 0.00 | 4.02 | 100. | 0.213 | 80.0 | 16.7 | 0.00 | 10.8 | 18.0 | 0.267 | 78.0 | 19.2 | 0.00 | 4.74 | 16.0 | 0.155 | 87.0 | 17.7 | 0.00 | 8.56 | 72.0 | 0.175 | 81.0 | 19.3 | 0.00 | 3.62 | 100. | 0.297 | 81.0 | 15.6 | 0.00 | 5.51 | 100. | 0.171 | 81.0 | 18.2 | 0.00 | 8.09 | 100. | 0.240 | 83.0 | 
time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    36,744 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
  
weather_temperature_2m_paris
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,439 (3.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 13.6 ± 6.99
 - Median ± IQR
 - 13.2 ± 9.80
 - Min | Max
 - -5.13 | 40.6
  
weather_precipitation_paris
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    135 (0.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.0911 ± 0.541
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 29.5
  
weather_wind_speed_10m_paris
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,777 (4.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.0 ± 5.28
 - Median ± IQR
 - 9.29 ± 7.18
 - Min | Max
 - 0.00 | 50.1
  
weather_cloud_cover_paris
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 69.2 ± 39.9
 - Median ± IQR
 - 97.0 ± 71.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_paris
Float32- Null values
 - 14,414 (39.2%)
 - Unique values
 - 
                    277 (0.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.298 ± 0.0397
 - Median ± IQR
 - 0.304 ± 0.0440
 - Min | Max
 - 0.139 | 0.436
  
weather_relative_humidity_2m_paris
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    91 (0.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 69.7 ± 18.1
 - Median ± IQR
 - 73.0 ± 27.0
 - Min | Max
 - 10.0 | 100.
  
weather_temperature_2m_lyon
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,565 (4.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 14.1 ± 7.96
 - Median ± IQR
 - 13.8 ± 11.3
 - Min | Max
 - -5.89 | 40.3
  
weather_precipitation_lyon
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    150 (0.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.0989 ± 0.608
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 26.3
  
weather_wind_speed_10m_lyon
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,729 (4.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.07 ± 6.04
 - Median ± IQR
 - 6.48 ± 7.67
 - Min | Max
 - 0.00 | 43.2
  
weather_cloud_cover_lyon
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 64.4 ± 41.8
 - Median ± IQR
 - 92.0 ± 88.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_lyon
Float32- Null values
 - 14,414 (39.2%)
 - Unique values
 - 
                    290 (0.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.296 ± 0.0380
 - Median ± IQR
 - 0.304 ± 0.0330
 - Min | Max
 - 0.124 | 0.441
  
weather_relative_humidity_2m_lyon
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    89 (0.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 68.6 ± 18.7
 - Median ± IQR
 - 71.0 ± 28.0
 - Min | Max
 - 12.0 | 100.
  
weather_temperature_2m_marseille
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,276 (3.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 17.5 ± 6.14
 - Median ± IQR
 - 17.1 ± 9.71
 - Min | Max
 - 0.317 | 36.6
  
weather_precipitation_marseille
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.0511 ± 0.381
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 21.0
  
weather_wind_speed_10m_marseille
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    4,018 (10.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 14.8 ± 10.8
 - Median ± IQR
 - 11.8 ± 12.3
 - Min | Max
 - 0.00 | 74.6
  
weather_cloud_cover_marseille
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 46.5 ± 44.5
 - Median ± IQR
 - 31.0 ± 100.
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_marseille
Float32- Null values
 - 14,480 (39.4%)
 - Unique values
 - 
                    354 (1.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.226 ± 0.0748
 - Median ± IQR
 - 0.223 ± 0.119
 - Min | Max
 - 0.100 | 0.459
  
weather_relative_humidity_2m_marseille
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    86 (0.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 63.4 ± 13.2
 - Median ± IQR
 - 64.0 ± 19.0
 - Min | Max
 - 14.0 | 99.0
  
weather_temperature_2m_toulouse
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,513 (4.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 15.2 ± 7.48
 - Median ± IQR
 - 14.6 ± 10.5
 - Min | Max
 - -5.33 | 41.2
  
weather_precipitation_toulouse
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    121 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.0737 ± 0.586
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 36.9
  
weather_wind_speed_10m_toulouse
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    2,123 (5.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 9.88 ± 6.48
 - Median ± IQR
 - 8.65 ± 8.61
 - Min | Max
 - 0.00 | 44.6
  
weather_cloud_cover_toulouse
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 62.1 ± 42.2
 - Median ± IQR
 - 86.0 ± 91.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_toulouse
Float32- Null values
 - 14,414 (39.2%)
 - Unique values
 - 
                    310 (0.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.271 ± 0.0505
 - Median ± IQR
 - 0.285 ± 0.0540
 - Min | Max
 - 0.104 | 0.454
  
weather_relative_humidity_2m_toulouse
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    93 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 69.7 ± 18.7
 - Median ± IQR
 - 73.0 ± 29.0
 - Min | Max
 - 8.00 | 100.
  
weather_temperature_2m_lille
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    2,081 (5.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.2 ± 6.58
 - Median ± IQR
 - 11.8 ± 9.05
 - Min | Max
 - -6.32 | 40.8
  
weather_precipitation_lille
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    75 (0.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.0974 ± 0.417
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 14.7
  
weather_wind_speed_10m_lille
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    2,536 (6.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.9 ± 6.60
 - Median ± IQR
 - 11.7 ± 8.47
 - Min | Max
 - 0.00 | 61.9
  
weather_cloud_cover_lille
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 67.5 ± 40.4
 - Median ± IQR
 - 96.0 ± 78.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_lille
Float32- Null values
 - 14,414 (39.2%)
 - Unique values
 - 
                    209 (0.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.306 ± 0.0315
 - Median ± IQR
 - 0.311 ± 0.0400
 - Min | Max
 - 0.203 | 0.422
  
weather_relative_humidity_2m_lille
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    96 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 74.6 ± 17.1
 - Median ± IQR
 - 79.0 ± 24.0
 - Min | Max
 - 0.00 | 100.
  
weather_temperature_2m_limoges
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,572 (4.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.7 ± 7.35
 - Median ± IQR
 - 12.1 ± 9.80
 - Min | Max
 - -7.70 | 39.7
  
weather_precipitation_limoges
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    153 (0.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.122 ± 0.621
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 45.5
  
weather_wind_speed_10m_limoges
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,359 (3.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 7.57 ± 4.77
 - Median ± IQR
 - 6.49 ± 6.90
 - Min | Max
 - 0.00 | 33.9
  
weather_cloud_cover_limoges
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 66.4 ± 40.8
 - Median ± IQR
 - 93.0 ± 81.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_limoges
Float32- Null values
 - 14,414 (39.2%)
 - Unique values
 - 
                    302 (0.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.282 ± 0.0554
 - Median ± IQR
 - 0.298 ± 0.0650
 - Min | Max
 - 0.115 | 0.450
  
weather_relative_humidity_2m_limoges
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    93 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 75.2 ± 19.9
 - Median ± IQR
 - 81.0 ± 29.0
 - Min | Max
 - 8.00 | 100.
  
weather_temperature_2m_nantes
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,539 (4.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 13.8 ± 6.65
 - Median ± IQR
 - 13.3 ± 8.51
 - Min | Max
 - -3.86 | 43.4
  
weather_precipitation_nantes
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    112 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.0866 ± 0.436
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 14.1
  
weather_wind_speed_10m_nantes
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    2,834 (7.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 13.4 ± 6.91
 - Median ± IQR
 - 12.0 ± 8.37
 - Min | Max
 - 0.00 | 58.6
  
weather_cloud_cover_nantes
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 65.0 ± 41.3
 - Median ± IQR
 - 93.0 ± 84.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_nantes
Float32- Null values
 - 14,480 (39.4%)
 - Unique values
 - 
                    314 (0.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.276 ± 0.0658
 - Median ± IQR
 - 0.295 ± 0.0840
 - Min | Max
 - 0.110 | 0.423
  
weather_relative_humidity_2m_nantes
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    94 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 74.0 ± 17.3
 - Median ± IQR
 - 78.0 ± 25.0
 - Min | Max
 - 7.00 | 100.
  
weather_temperature_2m_strasbourg
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,525 (4.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.7 ± 7.74
 - Median ± IQR
 - 12.3 ± 11.0
 - Min | Max
 - -9.31 | 38.8
  
weather_precipitation_strasbourg
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    128 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.102 ± 0.516
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 22.1
  
weather_wind_speed_10m_strasbourg
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,523 (4.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.45 ± 5.05
 - Median ± IQR
 - 7.52 ± 6.92
 - Min | Max
 - 0.00 | 38.1
  
weather_cloud_cover_strasbourg
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 69.7 ± 40.2
 - Median ± IQR
 - 98.0 ± 72.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_strasbourg
Float32- Null values
 - 14,414 (39.2%)
 - Unique values
 - 
                    304 (0.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.329 ± 0.0519
 - Median ± IQR
 - 0.343 ± 0.0530
 - Min | Max
 - 0.159 | 0.468
  
weather_relative_humidity_2m_strasbourg
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    88 (0.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 71.9 ± 18.4
 - Median ± IQR
 - 75.0 ± 28.0
 - Min | Max
 - 13.0 | 100.
  
weather_temperature_2m_brest
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,265 (3.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.9 ± 4.89
 - Median ± IQR
 - 12.6 ± 6.25
 - Min | Max
 - -2.33 | 40.5
  
weather_precipitation_brest
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    108 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.106 ± 0.431
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 12.7
  
weather_wind_speed_10m_brest
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    3,782 (10.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 16.2 ± 8.89
 - Median ± IQR
 - 14.5 ± 11.8
 - Min | Max
 - 0.00 | 67.3
  
weather_cloud_cover_brest
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    102 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 67.9 ± 39.8
 - Median ± IQR
 - 96.0 ± 75.0
 - Min | Max
 - 0.00 | 101.
  
weather_soil_moisture_1_to_3cm_brest
Float32- Null values
 - 14,480 (39.4%)
 - Unique values
 - 
                    279 (0.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.266 ± 0.0572
 - Median ± IQR
 - 0.277 ± 0.0740
 - Min | Max
 - 0.116 | 0.409
  
weather_relative_humidity_2m_brest
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    90 (0.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 78.2 ± 13.9
 - Median ± IQR
 - 81.0 ± 20.0
 - Min | Max
 - 10.0 | 100.
  
weather_temperature_2m_bayonne
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,554 (4.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 15.0 ± 6.40
 - Median ± IQR
 - 14.9 ± 8.47
 - Min | Max
 - -3.32 | 42.4
  
weather_precipitation_bayonne
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    131 (0.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.144 ± 0.551
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 18.5
  
weather_wind_speed_10m_bayonne
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    2,488 (6.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.9 ± 6.71
 - Median ± IQR
 - 9.36 ± 8.07
 - Min | Max
 - 0.00 | 51.5
  
weather_cloud_cover_bayonne
Float32- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    103 (0.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 66.3 ± 40.8
 - Median ± IQR
 - 94.0 ± 80.0
 - Min | Max
 - -1.00 | 101.
  
weather_soil_moisture_1_to_3cm_bayonne
Float32- Null values
 - 14,480 (39.4%)
 - Unique values
 - 
                    299 (0.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 0.276 ± 0.0509
 - Median ± IQR
 - 0.283 ± 0.0470
 - Min | Max
 - 0.0970 | 0.414
  
weather_relative_humidity_2m_bayonne
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    91 (0.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 76.2 ± 16.0
 - Median ± IQR
 - 79.0 ± 25.0
 - Min | Max
 - 9.00 | 100.
  
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | |||
| 1 | weather_temperature_2m_paris | Float32 | False | 0 (0.0%) | 1439 (3.9%) | 13.6 | 6.99 | -5.13 | 13.2 | 40.6 | 
| 2 | weather_precipitation_paris | Float32 | False | 1 (< 0.1%) | 135 (0.4%) | 0.0911 | 0.541 | 0.00 | 0.00 | 29.5 | 
| 3 | weather_wind_speed_10m_paris | Float32 | False | 0 (0.0%) | 1777 (4.8%) | 10.0 | 5.28 | 0.00 | 9.29 | 50.1 | 
| 4 | weather_cloud_cover_paris | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 69.2 | 39.9 | -1.00 | 97.0 | 101. | 
| 5 | weather_soil_moisture_1_to_3cm_paris | Float32 | False | 14414 (39.2%) | 277 (0.8%) | 0.298 | 0.0397 | 0.139 | 0.304 | 0.436 | 
| 6 | weather_relative_humidity_2m_paris | Float32 | False | 0 (0.0%) | 91 (0.2%) | 69.7 | 18.1 | 10.0 | 73.0 | 100. | 
| 7 | weather_temperature_2m_lyon | Float32 | False | 0 (0.0%) | 1565 (4.3%) | 14.1 | 7.96 | -5.89 | 13.8 | 40.3 | 
| 8 | weather_precipitation_lyon | Float32 | False | 1 (< 0.1%) | 150 (0.4%) | 0.0989 | 0.608 | 0.00 | 0.00 | 26.3 | 
| 9 | weather_wind_speed_10m_lyon | Float32 | False | 0 (0.0%) | 1729 (4.7%) | 8.07 | 6.04 | 0.00 | 6.48 | 43.2 | 
| 10 | weather_cloud_cover_lyon | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 64.4 | 41.8 | -1.00 | 92.0 | 101. | 
| 11 | weather_soil_moisture_1_to_3cm_lyon | Float32 | False | 14414 (39.2%) | 290 (0.8%) | 0.296 | 0.0380 | 0.124 | 0.304 | 0.441 | 
| 12 | weather_relative_humidity_2m_lyon | Float32 | False | 0 (0.0%) | 89 (0.2%) | 68.6 | 18.7 | 12.0 | 71.0 | 100. | 
| 13 | weather_temperature_2m_marseille | Float32 | False | 0 (0.0%) | 1276 (3.5%) | 17.5 | 6.14 | 0.317 | 17.1 | 36.6 | 
| 14 | weather_precipitation_marseille | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 0.0511 | 0.381 | 0.00 | 0.00 | 21.0 | 
| 15 | weather_wind_speed_10m_marseille | Float32 | False | 0 (0.0%) | 4018 (10.9%) | 14.8 | 10.8 | 0.00 | 11.8 | 74.6 | 
| 16 | weather_cloud_cover_marseille | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 46.5 | 44.5 | -1.00 | 31.0 | 101. | 
| 17 | weather_soil_moisture_1_to_3cm_marseille | Float32 | False | 14480 (39.4%) | 354 (1.0%) | 0.226 | 0.0748 | 0.100 | 0.223 | 0.459 | 
| 18 | weather_relative_humidity_2m_marseille | Float32 | False | 0 (0.0%) | 86 (0.2%) | 63.4 | 13.2 | 14.0 | 64.0 | 99.0 | 
| 19 | weather_temperature_2m_toulouse | Float32 | False | 0 (0.0%) | 1513 (4.1%) | 15.2 | 7.48 | -5.33 | 14.6 | 41.2 | 
| 20 | weather_precipitation_toulouse | Float32 | False | 1 (< 0.1%) | 121 (0.3%) | 0.0737 | 0.586 | 0.00 | 0.00 | 36.9 | 
| 21 | weather_wind_speed_10m_toulouse | Float32 | False | 0 (0.0%) | 2123 (5.8%) | 9.88 | 6.48 | 0.00 | 8.65 | 44.6 | 
| 22 | weather_cloud_cover_toulouse | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 62.1 | 42.2 | -1.00 | 86.0 | 101. | 
| 23 | weather_soil_moisture_1_to_3cm_toulouse | Float32 | False | 14414 (39.2%) | 310 (0.8%) | 0.271 | 0.0505 | 0.104 | 0.285 | 0.454 | 
| 24 | weather_relative_humidity_2m_toulouse | Float32 | False | 0 (0.0%) | 93 (0.3%) | 69.7 | 18.7 | 8.00 | 73.0 | 100. | 
| 25 | weather_temperature_2m_lille | Float32 | False | 0 (0.0%) | 2081 (5.7%) | 12.2 | 6.58 | -6.32 | 11.8 | 40.8 | 
| 26 | weather_precipitation_lille | Float32 | False | 1 (< 0.1%) | 75 (0.2%) | 0.0974 | 0.417 | 0.00 | 0.00 | 14.7 | 
| 27 | weather_wind_speed_10m_lille | Float32 | False | 0 (0.0%) | 2536 (6.9%) | 12.9 | 6.60 | 0.00 | 11.7 | 61.9 | 
| 28 | weather_cloud_cover_lille | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 67.5 | 40.4 | -1.00 | 96.0 | 101. | 
| 29 | weather_soil_moisture_1_to_3cm_lille | Float32 | False | 14414 (39.2%) | 209 (0.6%) | 0.306 | 0.0315 | 0.203 | 0.311 | 0.422 | 
| 30 | weather_relative_humidity_2m_lille | Float32 | False | 0 (0.0%) | 96 (0.3%) | 74.6 | 17.1 | 0.00 | 79.0 | 100. | 
| 31 | weather_temperature_2m_limoges | Float32 | False | 0 (0.0%) | 1572 (4.3%) | 12.7 | 7.35 | -7.70 | 12.1 | 39.7 | 
| 32 | weather_precipitation_limoges | Float32 | False | 1 (< 0.1%) | 153 (0.4%) | 0.122 | 0.621 | 0.00 | 0.00 | 45.5 | 
| 33 | weather_wind_speed_10m_limoges | Float32 | False | 0 (0.0%) | 1359 (3.7%) | 7.57 | 4.77 | 0.00 | 6.49 | 33.9 | 
| 34 | weather_cloud_cover_limoges | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 66.4 | 40.8 | -1.00 | 93.0 | 101. | 
| 35 | weather_soil_moisture_1_to_3cm_limoges | Float32 | False | 14414 (39.2%) | 302 (0.8%) | 0.282 | 0.0554 | 0.115 | 0.298 | 0.450 | 
| 36 | weather_relative_humidity_2m_limoges | Float32 | False | 0 (0.0%) | 93 (0.3%) | 75.2 | 19.9 | 8.00 | 81.0 | 100. | 
| 37 | weather_temperature_2m_nantes | Float32 | False | 0 (0.0%) | 1539 (4.2%) | 13.8 | 6.65 | -3.86 | 13.3 | 43.4 | 
| 38 | weather_precipitation_nantes | Float32 | False | 1 (< 0.1%) | 112 (0.3%) | 0.0866 | 0.436 | 0.00 | 0.00 | 14.1 | 
| 39 | weather_wind_speed_10m_nantes | Float32 | False | 0 (0.0%) | 2834 (7.7%) | 13.4 | 6.91 | 0.00 | 12.0 | 58.6 | 
| 40 | weather_cloud_cover_nantes | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 65.0 | 41.3 | -1.00 | 93.0 | 101. | 
| 41 | weather_soil_moisture_1_to_3cm_nantes | Float32 | False | 14480 (39.4%) | 314 (0.9%) | 0.276 | 0.0658 | 0.110 | 0.295 | 0.423 | 
| 42 | weather_relative_humidity_2m_nantes | Float32 | False | 0 (0.0%) | 94 (0.3%) | 74.0 | 17.3 | 7.00 | 78.0 | 100. | 
| 43 | weather_temperature_2m_strasbourg | Float32 | False | 0 (0.0%) | 1525 (4.2%) | 12.7 | 7.74 | -9.31 | 12.3 | 38.8 | 
| 44 | weather_precipitation_strasbourg | Float32 | False | 1 (< 0.1%) | 128 (0.3%) | 0.102 | 0.516 | 0.00 | 0.00 | 22.1 | 
| 45 | weather_wind_speed_10m_strasbourg | Float32 | False | 0 (0.0%) | 1523 (4.1%) | 8.45 | 5.05 | 0.00 | 7.52 | 38.1 | 
| 46 | weather_cloud_cover_strasbourg | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 69.7 | 40.2 | -1.00 | 98.0 | 101. | 
| 47 | weather_soil_moisture_1_to_3cm_strasbourg | Float32 | False | 14414 (39.2%) | 304 (0.8%) | 0.329 | 0.0519 | 0.159 | 0.343 | 0.468 | 
| 48 | weather_relative_humidity_2m_strasbourg | Float32 | False | 0 (0.0%) | 88 (0.2%) | 71.9 | 18.4 | 13.0 | 75.0 | 100. | 
| 49 | weather_temperature_2m_brest | Float32 | False | 0 (0.0%) | 1265 (3.4%) | 12.9 | 4.89 | -2.33 | 12.6 | 40.5 | 
| 50 | weather_precipitation_brest | Float32 | False | 1 (< 0.1%) | 108 (0.3%) | 0.106 | 0.431 | 0.00 | 0.00 | 12.7 | 
| 51 | weather_wind_speed_10m_brest | Float32 | False | 0 (0.0%) | 3782 (10.3%) | 16.2 | 8.89 | 0.00 | 14.5 | 67.3 | 
| 52 | weather_cloud_cover_brest | Float32 | False | 1 (< 0.1%) | 102 (0.3%) | 67.9 | 39.8 | 0.00 | 96.0 | 101. | 
| 53 | weather_soil_moisture_1_to_3cm_brest | Float32 | False | 14480 (39.4%) | 279 (0.8%) | 0.266 | 0.0572 | 0.116 | 0.277 | 0.409 | 
| 54 | weather_relative_humidity_2m_brest | Float32 | False | 0 (0.0%) | 90 (0.2%) | 78.2 | 13.9 | 10.0 | 81.0 | 100. | 
| 55 | weather_temperature_2m_bayonne | Float32 | False | 0 (0.0%) | 1554 (4.2%) | 15.0 | 6.40 | -3.32 | 14.9 | 42.4 | 
| 56 | weather_precipitation_bayonne | Float32 | False | 1 (< 0.1%) | 131 (0.4%) | 0.144 | 0.551 | 0.00 | 0.00 | 18.5 | 
| 57 | weather_wind_speed_10m_bayonne | Float32 | False | 0 (0.0%) | 2488 (6.8%) | 10.9 | 6.71 | 0.00 | 9.36 | 51.5 | 
| 58 | weather_cloud_cover_bayonne | Float32 | False | 1 (< 0.1%) | 103 (0.3%) | 66.3 | 40.8 | -1.00 | 94.0 | 101. | 
| 59 | weather_soil_moisture_1_to_3cm_bayonne | Float32 | False | 14480 (39.4%) | 299 (0.8%) | 0.276 | 0.0509 | 0.0970 | 0.283 | 0.414 | 
| 60 | weather_relative_humidity_2m_bayonne | Float32 | False | 0 (0.0%) | 91 (0.2%) | 76.2 | 16.0 | 9.00 | 79.0 | 100. | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Calendar and holidays features#
We leverage the holidays package to enrich the time range with some
calendar features such as public holidays in France. We also add some
features that are useful for time series forecasting such as the day of the
week, the day of the year, and the hour of the day.
Note that the holidays package requires us to extract the date for the
French timezone.
Similarly for the calendar features: all the time features are extracted from the time in the French timezone, since it is likely that electricity usage patterns are influenced by inhabitants’ daily routines aligned with the local timezone.
@skrub.deferred
def prepare_french_calendar_data(time):
    fr_time = pl.col("time").dt.convert_time_zone("Europe/Paris")
    fr_year_min = time.select(fr_time.dt.year().min()).item()
    fr_year_max = time.select(fr_time.dt.year().max()).item()
    holidays_fr = holidays.country_holidays(
        "FR", years=range(fr_year_min, fr_year_max + 1)
    )
    return time.with_columns(
        [
            fr_time.dt.hour().alias("cal_hour_of_day"),
            fr_time.dt.weekday().alias("cal_day_of_week"),
            fr_time.dt.ordinal_day().alias("cal_day_of_year"),
            fr_time.dt.year().alias("cal_year"),
            fr_time.dt.date().is_in(holidays_fr.keys()).alias("cal_is_holiday"),
        ],
    )
calendar = prepare_french_calendar_data(time)
calendar
Show graph
| time | cal_hour_of_day | cal_day_of_week | cal_day_of_year | cal_year | cal_is_holiday | 
|---|---|---|---|---|---|
| 2021-03-23 00:00:00+00:00 | 1 | 2 | 82 | 2,021 | 0 | 
| 2021-03-23 01:00:00+00:00 | 2 | 2 | 82 | 2,021 | 0 | 
| 2021-03-23 02:00:00+00:00 | 3 | 2 | 82 | 2,021 | 0 | 
| 2021-03-23 03:00:00+00:00 | 4 | 2 | 82 | 2,021 | 0 | 
| 2021-03-23 04:00:00+00:00 | 5 | 2 | 82 | 2,021 | 0 | 
| 2025-05-31 19:00:00+00:00 | 21 | 6 | 151 | 2,025 | 0 | 
| 2025-05-31 20:00:00+00:00 | 22 | 6 | 151 | 2,025 | 0 | 
| 2025-05-31 21:00:00+00:00 | 23 | 6 | 151 | 2,025 | 0 | 
| 2025-05-31 22:00:00+00:00 | 0 | 7 | 152 | 2,025 | 0 | 
| 2025-05-31 23:00:00+00:00 | 1 | 7 | 152 | 2,025 | 0 | 
time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    36,744 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
  
cal_hour_of_day
Int8- Null values
 - 0 (0.0%)
 - Unique values
 - 24 (< 0.1%)
 - Mean ± Std
 - 11.5 ± 6.92
 - Median ± IQR
 - 12.0 ± 11.0
 - Min | Max
 - 0.00 | 23.0
 
cal_day_of_week
Int8- Null values
 - 0 (0.0%)
 - Unique values
 - 7 (< 0.1%)
 - Mean ± Std
 - 4.00 ± 2.00
 - Median ± IQR
 - 4.00 ± 4.00
 - Min | Max
 - 1.00 | 7.00
 
cal_day_of_year
Int16- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    366 (1.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 180. ± 104.
 - Median ± IQR
 - 174. ± 177.
 - Min | Max
 - 1.00 | 366.
  
cal_year
Int32- Null values
 - 0 (0.0%)
 - Unique values
 - 5 (< 0.1%)
 - Mean ± Std
 - 2.02e+03 ± 1.26
 - Median ± IQR
 - 2.02e+03 ± 2.00
 - Min | Max
 - 2.02e+03 | 2.02e+03
 
cal_is_holiday
Boolean- Null values
 - 0 (0.0%)
 - Unique values
 - 2 (< 0.1%)
 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | |||
| 1 | cal_hour_of_day | Int8 | False | 0 (0.0%) | 24 (< 0.1%) | 11.5 | 6.92 | 0.00 | 12.0 | 23.0 | 
| 2 | cal_day_of_week | Int8 | False | 0 (0.0%) | 7 (< 0.1%) | 4.00 | 2.00 | 1.00 | 4.00 | 7.00 | 
| 3 | cal_day_of_year | Int16 | False | 0 (0.0%) | 366 (1.0%) | 180. | 104. | 1.00 | 174. | 366. | 
| 4 | cal_year | Int32 | True | 0 (0.0%) | 5 (< 0.1%) | 2.02e+03 | 1.26 | 2.02e+03 | 2.02e+03 | 2.02e+03 | 
| 5 | cal_is_holiday | Boolean | False | 0 (0.0%) | 2 (< 0.1%) | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Electricity load data#
Finally we load the electricity load data. This data will both be used as a target variable but also to craft some lagged and window-aggregated features.
@skrub.deferred
def load_electricity_load_data(time, data_source_folder):
    """Load and aggregate historical load data from the raw CSV files."""
    load_data_files = [
        data_file
        for data_file in sorted(Path(data_source_folder).iterdir())
        if data_file.name.startswith("Total Load - Day Ahead")
        and data_file.name.endswith(".csv")
    ]
    return time.join(
        (
            pl.concat(
                [
                    pl.from_pandas(pd.read_csv(data_file, na_values=["N/A", "-"])).drop(
                        ["Day-ahead Total Load Forecast [MW] - BZN|FR"]
                    )
                    for data_file in load_data_files
                ]
            ).select(
                [
                    pl.col("Time (UTC)")
                    .str.split(by=" - ")
                    .list.first()
                    .str.to_datetime("%d.%m.%Y %H:%M", time_zone="UTC")
                    .alias("time"),
                    pl.col("Actual Total Load [MW] - BZN|FR").alias("load_mw"),
                ]
            )
        ),
        on="time",
    )
Let’s load the data and check if there are missing values since we will use this data as the target variable for our forecasting model.
electricity_raw = load_electricity_load_data(time, data_source_folder)
electricity_raw.filter(pl.col("load_mw").is_null())
Show graph
| time | load_mw | 
|---|---|
| 2021-05-12 08:00:00+00:00 | |
| 2021-05-19 04:00:00+00:00 | |
| 2021-06-03 16:00:00+00:00 | |
| 2021-10-31 00:00:00+00:00 | |
| 2021-10-31 01:00:00+00:00 | |
| 2023-03-26 00:00:00+00:00 | |
| 2023-04-17 12:00:00+00:00 | |
| 2023-04-17 13:00:00+00:00 | |
| 2024-12-31 23:00:00+00:00 | |
| 2025-03-30 02:00:00+00:00 | 
time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 36 (100.0%)
 - Min | Max
 - 2021-05-12T08:00:00+00:00 | 2025-03-30T02:00:00+00:00
 
load_mw
Float64- Null values
 - 36 (100.0%)
 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | time | Datetime | True | 0 (0.0%) | 36 (100.0%) | 2021-05-12T08:00:00+00:00 | 2025-03-30T02:00:00+00:00 | |||
| 1 | load_mw | Float64 | False | 36 (100.0%) | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
So apparently there a few missing measurements. Let’s use linear interpolation to fill those missing values.
electricity_raw.filter(
    (pl.col("time") > pl.datetime(2021, 10, 30, hour=10, time_zone="UTC"))
    & (pl.col("time") < pl.datetime(2021, 10, 31, hour=10, time_zone="UTC"))
).skb.eval().plot.line(x="time:T", y="load_mw:Q")
electricity = electricity_raw.with_columns([pl.col("load_mw").interpolate()])
electricity.filter(
    (pl.col("time") > pl.datetime(2021, 10, 30, hour=10, time_zone="UTC"))
    & (pl.col("time") < pl.datetime(2021, 10, 31, hour=10, time_zone="UTC"))
).skb.eval().plot.line(x="time:T", y="load_mw:Q")
Remark: interpolating missing values in the target column that we will use to train and evaluate our models can bias the learning problem and make our cross-validation metrics misrepresent the performance of the deployed predictive system.
A potentially better approach would be to keep the missing values in the dataset and use a sample_weight mask to keep a contiguous dataset while ignoring the time periods with missing values when training or evaluating the model.
Lagged features#
We can now create some lagged features from the electricity load data.
We will create 3 hourly lagged features, 1 daily lagged feature, and 1 weekly lagged feature. We will also create a rolling median and inter-quartile feature over the last 24 hours and over the last 7 days.
def iqr(col, *, window_size: int):
    """Inter-quartile range (IQR) of a column."""
    return col.rolling_quantile(0.75, window_size=window_size) - col.rolling_quantile(
        0.25, window_size=window_size
    )
electricity_lagged = electricity.with_columns(
    [pl.col("load_mw").shift(i).alias(f"load_mw_lag_{i}h") for i in range(1, 4)]
    + [
        pl.col("load_mw").shift(24).alias("load_mw_lag_1d"),
        pl.col("load_mw").shift(24 * 7).alias("load_mw_lag_1w"),
        pl.col("load_mw")
        .rolling_median(window_size=24)
        .alias("load_mw_rolling_median_24h"),
        pl.col("load_mw")
        .rolling_median(window_size=24 * 7)
        .alias("load_mw_rolling_median_7d"),
        iqr(pl.col("load_mw"), window_size=24).alias("load_mw_iqr_24h"),
        iqr(pl.col("load_mw"), window_size=24 * 7).alias("load_mw_iqr_7d"),
    ],
)
electricity_lagged
Show graph
| time | load_mw | load_mw_lag_1h | load_mw_lag_2h | load_mw_lag_3h | load_mw_lag_1d | load_mw_lag_1w | load_mw_rolling_median_24h | load_mw_rolling_median_7d | load_mw_iqr_24h | load_mw_iqr_7d | 
|---|---|---|---|---|---|---|---|---|---|---|
| 2021-03-23 00:00:00+00:00 | 5.98e+04 | |||||||||
| 2021-03-23 01:00:00+00:00 | 5.94e+04 | 5.98e+04 | ||||||||
| 2021-03-23 02:00:00+00:00 | 5.76e+04 | 5.94e+04 | 5.98e+04 | |||||||
| 2021-03-23 03:00:00+00:00 | 5.72e+04 | 5.76e+04 | 5.94e+04 | 5.98e+04 | ||||||
| 2021-03-23 04:00:00+00:00 | 6.04e+04 | 5.72e+04 | 5.76e+04 | 5.94e+04 | ||||||
| 2025-05-31 19:00:00+00:00 | 3.91e+04 | 4.00e+04 | 4.09e+04 | 4.02e+04 | 4.16e+04 | 3.91e+04 | 3.94e+04 | 4.07e+04 | 4.23e+03 | 7.24e+03 | 
| 2025-05-31 20:00:00+00:00 | 4.04e+04 | 3.91e+04 | 4.00e+04 | 4.09e+04 | 4.29e+04 | 4.03e+04 | 3.94e+04 | 4.07e+04 | 4.16e+03 | 7.24e+03 | 
| 2025-05-31 21:00:00+00:00 | 4.12e+04 | 4.04e+04 | 3.91e+04 | 4.00e+04 | 4.38e+04 | 4.15e+04 | 3.94e+04 | 4.07e+04 | 4.16e+03 | 7.24e+03 | 
| 2025-05-31 22:00:00+00:00 | 3.97e+04 | 4.12e+04 | 4.04e+04 | 3.91e+04 | 4.20e+04 | 4.03e+04 | 3.94e+04 | 4.07e+04 | 4.14e+03 | 7.24e+03 | 
| 2025-05-31 23:00:00+00:00 | 3.61e+04 | 3.97e+04 | 4.12e+04 | 4.04e+04 | 3.82e+04 | 3.71e+04 | 3.94e+04 | 4.07e+04 | 4.82e+03 | 7.24e+03 | 
time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    36,744 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
  
load_mw
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    23,353 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1h
Float64- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    23,353 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_2h
Float64- Null values
 - 2 (< 0.1%)
 - Unique values
 - 
                    23,352 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_3h
Float64- Null values
 - 3 (< 0.1%)
 - Unique values
 - 
                    23,352 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1d
Float64- Null values
 - 24 (< 0.1%)
 - Unique values
 - 
                    23,342 (63.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1w
Float64- Null values
 - 168 (0.5%)
 - Unique values
 - 
                    23,293 (63.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.82e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_rolling_median_24h
Float64- Null values
 - 23 (< 0.1%)
 - Unique values
 - 
                    9,644 (26.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.06e+04 ± 9.28e+03
 - Median ± IQR
 - 4.75e+04 ± 1.29e+04
 - Min | Max
 - 3.37e+04 | 7.84e+04
  
load_mw_rolling_median_7d
Float64- Null values
 - 167 (0.5%)
 - Unique values
 - 
                    7,138 (19.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.01e+04 ± 8.82e+03
 - Median ± IQR
 - 4.60e+04 ± 1.35e+04
 - Min | Max
 - 3.85e+04 | 7.39e+04
  
load_mw_iqr_24h
Float64- Null values
 - 23 (< 0.1%)
 - Unique values
 - 
                    5,922 (16.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 6.52e+03 ± 1.56e+03
 - Median ± IQR
 - 6.43e+03 ± 2.05e+03
 - Min | Max
 - 2.32e+03 | 1.60e+04
  
load_mw_iqr_7d
Float64- Null values
 - 167 (0.5%)
 - Unique values
 - 
                    5,327 (14.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.30e+03 ± 1.41e+03
 - Median ± IQR
 - 8.27e+03 ± 1.63e+03
 - Min | Max
 - 5.04e+03 | 1.86e+04
  
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | |||
| 1 | load_mw | Float64 | False | 0 (0.0%) | 23353 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 2 | load_mw_lag_1h | Float64 | False | 1 (< 0.1%) | 23353 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 3 | load_mw_lag_2h | Float64 | False | 2 (< 0.1%) | 23352 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 4 | load_mw_lag_3h | Float64 | False | 3 (< 0.1%) | 23352 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 5 | load_mw_lag_1d | Float64 | False | 24 (< 0.1%) | 23342 (63.5%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 6 | load_mw_lag_1w | Float64 | False | 168 (0.5%) | 23293 (63.4%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.82e+04 | 8.66e+04 | 
| 7 | load_mw_rolling_median_24h | Float64 | False | 23 (< 0.1%) | 9644 (26.2%) | 5.06e+04 | 9.28e+03 | 3.37e+04 | 4.75e+04 | 7.84e+04 | 
| 8 | load_mw_rolling_median_7d | Float64 | False | 167 (0.5%) | 7138 (19.4%) | 5.01e+04 | 8.82e+03 | 3.85e+04 | 4.60e+04 | 7.39e+04 | 
| 9 | load_mw_iqr_24h | Float64 | False | 23 (< 0.1%) | 5922 (16.1%) | 6.52e+03 | 1.56e+03 | 2.32e+03 | 6.43e+03 | 1.60e+04 | 
| 10 | load_mw_iqr_7d | Float64 | False | 167 (0.5%) | 5327 (14.5%) | 8.30e+03 | 1.41e+03 | 5.04e+03 | 8.27e+03 | 1.86e+04 | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
altair.Chart(electricity_lagged.tail(100).skb.preview()).transform_fold(
    [
        "load_mw",
        "load_mw_lag_1h",
        "load_mw_lag_2h",
        "load_mw_lag_3h",
        "load_mw_lag_1d",
        "load_mw_lag_1w",
        "load_mw_rolling_median_24h",
        "load_mw_rolling_median_7d",
        "load_mw_rolling_iqr_24h",
        "load_mw_rolling_iqr_7d",
    ],
    as_=["key", "load_mw"],
).mark_line(tooltip=True).encode(x="time:T", y="load_mw:Q", color="key:N").interactive()
Important remark about lagged features engineering and system lag#
When working with historical data, we often have access to all the past measurements in the dataset. However, when we want to use the lagged features in a forecasting model, we need to be careful about the length of the system lag. The system lag is the timelaps between the moment a timestamped measurement is made in the real world and the moment where the record is made available to the downstream application (in our case, a deployed predictive pipeline).
System lag is rarely explicitly represented in the data sources even if such delay can be as large as several hours or even days and can sometimes be irregular. For instance, if there is a human intervention in the data recording process, holidays and weekends can punctually add significant delay.
If the system lag is larger than the maximum feature engineering lag, the resulting features be filled with missing values once deployed. More importantly, if the system lag is not handled explicitly, those resulting missing values will only be present in the features computed for the deployed system but not present in the features computed to train and backtest the system before deployment.
This structural discrepancy can severely degrade the performance of the deployed model compared to the performance estimated from backtesting on the historical data.
We will set this problem aside for now but discuss it again in a later section of this tutorial.
Investigating outliers in the lagged features#
Let’s use the skrub.TableReport tool to look at the plots of the marginal
distribution of the lagged features.
from skrub import TableReport
TableReport(electricity_lagged.skb.eval())
Processing column   1 / 11
Processing column   2 / 11
Processing column   3 / 11
Processing column   4 / 11
Processing column   5 / 11
Processing column   6 / 11
Processing column   7 / 11
Processing column   8 / 11
Processing column   9 / 11
Processing column  10 / 11
Processing column  11 / 11
| time | load_mw | load_mw_lag_1h | load_mw_lag_2h | load_mw_lag_3h | load_mw_lag_1d | load_mw_lag_1w | load_mw_rolling_median_24h | load_mw_rolling_median_7d | load_mw_iqr_24h | load_mw_iqr_7d | 
|---|---|---|---|---|---|---|---|---|---|---|
| 2021-03-23 00:00:00+00:00 | 5.98e+04 | |||||||||
| 2021-03-23 01:00:00+00:00 | 5.94e+04 | 5.98e+04 | ||||||||
| 2021-03-23 02:00:00+00:00 | 5.76e+04 | 5.94e+04 | 5.98e+04 | |||||||
| 2021-03-23 03:00:00+00:00 | 5.72e+04 | 5.76e+04 | 5.94e+04 | 5.98e+04 | ||||||
| 2021-03-23 04:00:00+00:00 | 6.04e+04 | 5.72e+04 | 5.76e+04 | 5.94e+04 | ||||||
| 2025-05-31 19:00:00+00:00 | 3.91e+04 | 4.00e+04 | 4.09e+04 | 4.02e+04 | 4.16e+04 | 3.91e+04 | 3.94e+04 | 4.07e+04 | 4.23e+03 | 7.24e+03 | 
| 2025-05-31 20:00:00+00:00 | 4.04e+04 | 3.91e+04 | 4.00e+04 | 4.09e+04 | 4.29e+04 | 4.03e+04 | 3.94e+04 | 4.07e+04 | 4.16e+03 | 7.24e+03 | 
| 2025-05-31 21:00:00+00:00 | 4.12e+04 | 4.04e+04 | 3.91e+04 | 4.00e+04 | 4.38e+04 | 4.15e+04 | 3.94e+04 | 4.07e+04 | 4.16e+03 | 7.24e+03 | 
| 2025-05-31 22:00:00+00:00 | 3.97e+04 | 4.12e+04 | 4.04e+04 | 3.91e+04 | 4.20e+04 | 4.03e+04 | 3.94e+04 | 4.07e+04 | 4.14e+03 | 7.24e+03 | 
| 2025-05-31 23:00:00+00:00 | 3.61e+04 | 3.97e+04 | 4.12e+04 | 4.04e+04 | 3.82e+04 | 3.71e+04 | 3.94e+04 | 4.07e+04 | 4.82e+03 | 7.24e+03 | 
time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    36,744 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
  
load_mw
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    23,353 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1h
Float64- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    23,353 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_2h
Float64- Null values
 - 2 (< 0.1%)
 - Unique values
 - 
                    23,352 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_3h
Float64- Null values
 - 3 (< 0.1%)
 - Unique values
 - 
                    23,352 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1d
Float64- Null values
 - 24 (< 0.1%)
 - Unique values
 - 
                    23,342 (63.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1w
Float64- Null values
 - 168 (0.5%)
 - Unique values
 - 
                    23,293 (63.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.82e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_rolling_median_24h
Float64- Null values
 - 23 (< 0.1%)
 - Unique values
 - 
                    9,644 (26.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.06e+04 ± 9.28e+03
 - Median ± IQR
 - 4.75e+04 ± 1.29e+04
 - Min | Max
 - 3.37e+04 | 7.84e+04
  
load_mw_rolling_median_7d
Float64- Null values
 - 167 (0.5%)
 - Unique values
 - 
                    7,138 (19.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.01e+04 ± 8.82e+03
 - Median ± IQR
 - 4.60e+04 ± 1.35e+04
 - Min | Max
 - 3.85e+04 | 7.39e+04
  
load_mw_iqr_24h
Float64- Null values
 - 23 (< 0.1%)
 - Unique values
 - 
                    5,922 (16.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 6.52e+03 ± 1.56e+03
 - Median ± IQR
 - 6.43e+03 ± 2.05e+03
 - Min | Max
 - 2.32e+03 | 1.60e+04
  
load_mw_iqr_7d
Float64- Null values
 - 167 (0.5%)
 - Unique values
 - 
                    5,327 (14.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.30e+03 ± 1.41e+03
 - Median ± IQR
 - 8.27e+03 ± 1.63e+03
 - Min | Max
 - 5.04e+03 | 1.86e+04
  
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | time | Datetime | True | 0 (0.0%) | 36744 (100.0%) | 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00 | |||
| 1 | load_mw | Float64 | False | 0 (0.0%) | 23353 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 2 | load_mw_lag_1h | Float64 | False | 1 (< 0.1%) | 23353 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 3 | load_mw_lag_2h | Float64 | False | 2 (< 0.1%) | 23352 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 4 | load_mw_lag_3h | Float64 | False | 3 (< 0.1%) | 23352 (63.6%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 5 | load_mw_lag_1d | Float64 | False | 24 (< 0.1%) | 23342 (63.5%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.81e+04 | 8.66e+04 | 
| 6 | load_mw_lag_1w | Float64 | False | 168 (0.5%) | 23293 (63.4%) | 4.99e+04 | 1.05e+04 | 2.87e+04 | 4.82e+04 | 8.66e+04 | 
| 7 | load_mw_rolling_median_24h | Float64 | False | 23 (< 0.1%) | 9644 (26.2%) | 5.06e+04 | 9.28e+03 | 3.37e+04 | 4.75e+04 | 7.84e+04 | 
| 8 | load_mw_rolling_median_7d | Float64 | False | 167 (0.5%) | 7138 (19.4%) | 5.01e+04 | 8.82e+03 | 3.85e+04 | 4.60e+04 | 7.39e+04 | 
| 9 | load_mw_iqr_24h | Float64 | False | 23 (< 0.1%) | 5922 (16.1%) | 6.52e+03 | 1.56e+03 | 2.32e+03 | 6.43e+03 | 1.60e+04 | 
| 10 | load_mw_iqr_7d | Float64 | False | 167 (0.5%) | 5327 (14.5%) | 8.30e+03 | 1.41e+03 | 5.04e+03 | 8.27e+03 | 1.86e+04 | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    36,744 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-23T00:00:00+00:00 | 2025-05-31T23:00:00+00:00
  
load_mw
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    23,353 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1h
Float64- Null values
 - 1 (< 0.1%)
 - Unique values
 - 
                    23,353 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_2h
Float64- Null values
 - 2 (< 0.1%)
 - Unique values
 - 
                    23,352 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_3h
Float64- Null values
 - 3 (< 0.1%)
 - Unique values
 - 
                    23,352 (63.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1d
Float64- Null values
 - 24 (< 0.1%)
 - Unique values
 - 
                    23,342 (63.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.81e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_lag_1w
Float64- Null values
 - 168 (0.5%)
 - Unique values
 - 
                    23,293 (63.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 4.99e+04 ± 1.05e+04
 - Median ± IQR
 - 4.82e+04 ± 1.41e+04
 - Min | Max
 - 2.87e+04 | 8.66e+04
  
load_mw_rolling_median_24h
Float64- Null values
 - 23 (< 0.1%)
 - Unique values
 - 
                    9,644 (26.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.06e+04 ± 9.28e+03
 - Median ± IQR
 - 4.75e+04 ± 1.29e+04
 - Min | Max
 - 3.37e+04 | 7.84e+04
  
load_mw_rolling_median_7d
Float64- Null values
 - 167 (0.5%)
 - Unique values
 - 
                    7,138 (19.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.01e+04 ± 8.82e+03
 - Median ± IQR
 - 4.60e+04 ± 1.35e+04
 - Min | Max
 - 3.85e+04 | 7.39e+04
  
load_mw_iqr_24h
Float64- Null values
 - 23 (< 0.1%)
 - Unique values
 - 
                    5,922 (16.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 6.52e+03 ± 1.56e+03
 - Median ± IQR
 - 6.43e+03 ± 2.05e+03
 - Min | Max
 - 2.32e+03 | 1.60e+04
  
load_mw_iqr_7d
Float64- Null values
 - 167 (0.5%)
 - Unique values
 - 
                    5,327 (14.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.30e+03 ± 1.41e+03
 - Median ± IQR
 - 8.27e+03 ± 1.63e+03
 - Min | Max
 - 5.04e+03 | 1.86e+04
  
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| Column 1 | Column 2 | Cramér's V | Pearson's Correlation | 
|---|---|---|---|
| load_mw_lag_1h | load_mw_lag_2h | 0.730 | 0.982 | 
| load_mw | load_mw_lag_1h | 0.711 | 0.982 | 
| load_mw_lag_2h | load_mw_lag_3h | 0.705 | 0.982 | 
| load_mw_lag_1d | load_mw_rolling_median_24h | 0.626 | 0.896 | 
| load_mw_lag_1w | load_mw_rolling_median_7d | 0.624 | 0.841 | 
| load_mw | load_mw_lag_1d | 0.600 | 0.933 | 
| load_mw_lag_1h | load_mw_lag_3h | 0.557 | 0.943 | 
| load_mw | load_mw_lag_2h | 0.556 | 0.942 | 
| load_mw_lag_1h | load_mw_lag_1d | 0.554 | 0.918 | 
| load_mw_rolling_median_24h | load_mw_rolling_median_7d | 0.532 | 0.917 | 
| load_mw | load_mw_lag_1w | 0.522 | 0.886 | 
| load_mw_lag_1h | load_mw_rolling_median_24h | 0.497 | 0.894 | 
| load_mw_lag_2h | load_mw_rolling_median_24h | 0.494 | 0.897 | 
| load_mw_lag_3h | load_mw_rolling_median_24h | 0.493 | 0.899 | 
| load_mw_rolling_median_7d | load_mw_iqr_7d | 0.491 | 0.231 | 
| load_mw_lag_2h | load_mw_lag_1d | 0.491 | 0.885 | 
| load_mw | load_mw_rolling_median_24h | 0.491 | 0.890 | 
| load_mw_lag_1h | load_mw_lag_1w | 0.488 | 0.869 | 
| load_mw_lag_1d | load_mw_lag_1w | 0.475 | 0.854 | 
| load_mw | load_mw_lag_3h | 0.472 | 0.898 | 
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Let’s extract the dates where the inter-quartile range of the load on 7 days is greater than 15,000 MW, to investigate the outliers hightlighted by the TableReport.
electricity_lagged.filter(pl.col("load_mw_iqr_7d") > 15_000)[
    "time"
].dt.date().unique().sort().to_list().skb.eval()
[datetime.date(2021, 12, 26),
 datetime.date(2021, 12, 27),
 datetime.date(2021, 12, 28),
 datetime.date(2022, 1, 7),
 datetime.date(2022, 1, 8),
 datetime.date(2023, 1, 19),
 datetime.date(2023, 1, 20),
 datetime.date(2023, 1, 21),
 datetime.date(2024, 1, 10),
 datetime.date(2024, 1, 11),
 datetime.date(2024, 1, 12),
 datetime.date(2024, 1, 13)]
We observe 3 date ranges with high inter-quartile range. Let’s plot the electricity load and the lagged features for the first data range along with the weather data for Paris.
altair.Chart(
    electricity_lagged.filter(
        (pl.col("time") > pl.datetime(2021, 12, 1, time_zone="UTC"))
        & (pl.col("time") < pl.datetime(2021, 12, 31, time_zone="UTC"))
    ).skb.eval()
).transform_fold(
    [
        "load_mw",
        "load_mw_iqr_7d",
    ],
).mark_line(
    tooltip=True
).encode(
    x="time:T", y="value:Q", color="key:N"
).interactive()
altair.Chart(
    all_city_weather.filter(
        (pl.col("time") > pl.datetime(2021, 12, 1, time_zone="UTC"))
        & (pl.col("time") < pl.datetime(2021, 12, 31, time_zone="UTC"))
    ).skb.eval()
).transform_fold(
    [f"weather_temperature_2m_{city_name}" for city_name in city_names.skb.eval()],
).mark_line(
    tooltip=True
).encode(
    x="time:T", y="value:Q", color="key:N"
).interactive()
Based on the plots above, we can see that the electricity load was high just before the Christmas holidays due to low temperatures. Then the load suddenly dropped because temperatures went higher right at the start of the end-of-year holidays.
So those outliers do not seem to be caused to a data quality issue but rather due to a real change in the electricity load demand. We could conduct similar analysis for the other date ranges with high inter-quartile range but we will skip that for now.
If we had observed significant data quality issues over extended periods of
time could have been addressed by removing the corresponding rows from the
dataset. However, this would make the lagged and windowing feature
engineering challenging to reimplement correctly. A better approach would be
to keep a contiguous dataset assign 0 weights to the affected rows when
fitting or evaluating the trained models via the use of the sample_weight
parameter.
Final dataset#
We now assemble the dataset that will be used to train and evaluate the forecasting models via backtesting.
prediction_start_time = skrub.var(
    "prediction_start_time", historical_data_start_time.skb.eval() + pl.duration(days=7)
)
prediction_end_time = skrub.var(
    "prediction_end_time", historical_data_end_time.skb.eval() - pl.duration(hours=24)
)
@skrub.deferred
def define_prediction_time_range(prediction_start_time, prediction_end_time):
    return pl.DataFrame().with_columns(
        pl.datetime_range(
            start=prediction_start_time,
            end=prediction_end_time,
            time_zone="UTC",
            interval="1h",
        ).alias("prediction_time"),
    )
prediction_time = define_prediction_time_range(
    prediction_start_time, prediction_end_time
).skb.subsample(n=1000, how="head")
prediction_time
Show graph
| prediction_time | 
|---|
| 2021-03-30 00:00:00+00:00 | 
| 2021-03-30 01:00:00+00:00 | 
| 2021-03-30 02:00:00+00:00 | 
| 2021-03-30 03:00:00+00:00 | 
| 2021-03-30 04:00:00+00:00 | 
| 2021-05-10 11:00:00+00:00 | 
| 2021-05-10 12:00:00+00:00 | 
| 2021-05-10 13:00:00+00:00 | 
| 2021-05-10 14:00:00+00:00 | 
| 2021-05-10 15:00:00+00:00 | 
prediction_time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,000 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-30T00:00:00+00:00 | 2021-05-10T15:00:00+00:00
  
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | prediction_time | Datetime | True | 0 (0.0%) | 1000 (100.0%) | 2021-03-30T00:00:00+00:00 | 2021-05-10T15:00:00+00:00 | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
@skrub.deferred
def build_features(
    prediction_time,
    electricity_lagged,
    all_city_weather,
    calendar,
    future_feature_horizons=[1, 24],
):
    return (
        prediction_time.join(
            electricity_lagged, left_on="prediction_time", right_on="time"
        )
        .join(
            all_city_weather.select(
                [pl.col("time")]
                + [
                    pl.col(c).shift(-h).alias(c + f"_future_{h}h")
                    for c in all_city_weather.columns
                    if c != "time"
                    for h in future_feature_horizons
                ]
            ),
            left_on="prediction_time",
            right_on="time",
        )
        .join(
            calendar.select(
                [pl.col("time")]
                + [
                    pl.col(c).shift(-h).alias(c + f"_future_{h}h")
                    for c in calendar.columns
                    if c != "time"
                    for h in future_feature_horizons
                ]
            ),
            left_on="prediction_time",
            right_on="time",
        )
    ).drop("prediction_time")
features = build_features(
    prediction_time=prediction_time,
    electricity_lagged=electricity_lagged,
    all_city_weather=all_city_weather,
    calendar=calendar,
).skb.mark_as_X()
features
Show graph
| load_mw | load_mw_lag_1h | load_mw_lag_2h | load_mw_lag_3h | load_mw_lag_1d | load_mw_lag_1w | load_mw_rolling_median_24h | load_mw_rolling_median_7d | load_mw_iqr_24h | load_mw_iqr_7d | weather_temperature_2m_paris_future_1h | weather_temperature_2m_paris_future_24h | weather_precipitation_paris_future_1h | weather_precipitation_paris_future_24h | weather_wind_speed_10m_paris_future_1h | weather_wind_speed_10m_paris_future_24h | weather_cloud_cover_paris_future_1h | weather_cloud_cover_paris_future_24h | weather_soil_moisture_1_to_3cm_paris_future_1h | weather_soil_moisture_1_to_3cm_paris_future_24h | weather_relative_humidity_2m_paris_future_1h | weather_relative_humidity_2m_paris_future_24h | weather_temperature_2m_lyon_future_1h | weather_temperature_2m_lyon_future_24h | weather_precipitation_lyon_future_1h | weather_precipitation_lyon_future_24h | weather_wind_speed_10m_lyon_future_1h | weather_wind_speed_10m_lyon_future_24h | weather_cloud_cover_lyon_future_1h | weather_cloud_cover_lyon_future_24h | weather_soil_moisture_1_to_3cm_lyon_future_1h | weather_soil_moisture_1_to_3cm_lyon_future_24h | weather_relative_humidity_2m_lyon_future_1h | weather_relative_humidity_2m_lyon_future_24h | weather_temperature_2m_marseille_future_1h | weather_temperature_2m_marseille_future_24h | weather_precipitation_marseille_future_1h | weather_precipitation_marseille_future_24h | weather_wind_speed_10m_marseille_future_1h | weather_wind_speed_10m_marseille_future_24h | weather_cloud_cover_marseille_future_1h | weather_cloud_cover_marseille_future_24h | weather_soil_moisture_1_to_3cm_marseille_future_1h | weather_soil_moisture_1_to_3cm_marseille_future_24h | weather_relative_humidity_2m_marseille_future_1h | weather_relative_humidity_2m_marseille_future_24h | weather_temperature_2m_toulouse_future_1h | weather_temperature_2m_toulouse_future_24h | weather_precipitation_toulouse_future_1h | weather_precipitation_toulouse_future_24h | weather_wind_speed_10m_toulouse_future_1h | weather_wind_speed_10m_toulouse_future_24h | weather_cloud_cover_toulouse_future_1h | weather_cloud_cover_toulouse_future_24h | weather_soil_moisture_1_to_3cm_toulouse_future_1h | weather_soil_moisture_1_to_3cm_toulouse_future_24h | weather_relative_humidity_2m_toulouse_future_1h | weather_relative_humidity_2m_toulouse_future_24h | weather_temperature_2m_lille_future_1h | weather_temperature_2m_lille_future_24h | weather_precipitation_lille_future_1h | weather_precipitation_lille_future_24h | weather_wind_speed_10m_lille_future_1h | weather_wind_speed_10m_lille_future_24h | weather_cloud_cover_lille_future_1h | weather_cloud_cover_lille_future_24h | weather_soil_moisture_1_to_3cm_lille_future_1h | weather_soil_moisture_1_to_3cm_lille_future_24h | weather_relative_humidity_2m_lille_future_1h | weather_relative_humidity_2m_lille_future_24h | weather_temperature_2m_limoges_future_1h | weather_temperature_2m_limoges_future_24h | weather_precipitation_limoges_future_1h | weather_precipitation_limoges_future_24h | weather_wind_speed_10m_limoges_future_1h | weather_wind_speed_10m_limoges_future_24h | weather_cloud_cover_limoges_future_1h | weather_cloud_cover_limoges_future_24h | weather_soil_moisture_1_to_3cm_limoges_future_1h | weather_soil_moisture_1_to_3cm_limoges_future_24h | weather_relative_humidity_2m_limoges_future_1h | weather_relative_humidity_2m_limoges_future_24h | weather_temperature_2m_nantes_future_1h | weather_temperature_2m_nantes_future_24h | weather_precipitation_nantes_future_1h | weather_precipitation_nantes_future_24h | weather_wind_speed_10m_nantes_future_1h | weather_wind_speed_10m_nantes_future_24h | weather_cloud_cover_nantes_future_1h | weather_cloud_cover_nantes_future_24h | weather_soil_moisture_1_to_3cm_nantes_future_1h | weather_soil_moisture_1_to_3cm_nantes_future_24h | weather_relative_humidity_2m_nantes_future_1h | weather_relative_humidity_2m_nantes_future_24h | weather_temperature_2m_strasbourg_future_1h | weather_temperature_2m_strasbourg_future_24h | weather_precipitation_strasbourg_future_1h | weather_precipitation_strasbourg_future_24h | weather_wind_speed_10m_strasbourg_future_1h | weather_wind_speed_10m_strasbourg_future_24h | weather_cloud_cover_strasbourg_future_1h | weather_cloud_cover_strasbourg_future_24h | weather_soil_moisture_1_to_3cm_strasbourg_future_1h | weather_soil_moisture_1_to_3cm_strasbourg_future_24h | weather_relative_humidity_2m_strasbourg_future_1h | weather_relative_humidity_2m_strasbourg_future_24h | weather_temperature_2m_brest_future_1h | weather_temperature_2m_brest_future_24h | weather_precipitation_brest_future_1h | weather_precipitation_brest_future_24h | weather_wind_speed_10m_brest_future_1h | weather_wind_speed_10m_brest_future_24h | weather_cloud_cover_brest_future_1h | weather_cloud_cover_brest_future_24h | weather_soil_moisture_1_to_3cm_brest_future_1h | weather_soil_moisture_1_to_3cm_brest_future_24h | weather_relative_humidity_2m_brest_future_1h | weather_relative_humidity_2m_brest_future_24h | weather_temperature_2m_bayonne_future_1h | weather_temperature_2m_bayonne_future_24h | weather_precipitation_bayonne_future_1h | weather_precipitation_bayonne_future_24h | weather_wind_speed_10m_bayonne_future_1h | weather_wind_speed_10m_bayonne_future_24h | weather_cloud_cover_bayonne_future_1h | weather_cloud_cover_bayonne_future_24h | weather_soil_moisture_1_to_3cm_bayonne_future_1h | weather_soil_moisture_1_to_3cm_bayonne_future_24h | weather_relative_humidity_2m_bayonne_future_1h | weather_relative_humidity_2m_bayonne_future_24h | cal_hour_of_day_future_1h | cal_hour_of_day_future_24h | cal_day_of_week_future_1h | cal_day_of_week_future_24h | cal_day_of_year_future_1h | cal_day_of_year_future_24h | cal_year_future_1h | cal_year_future_24h | cal_is_holiday_future_1h | cal_is_holiday_future_24h | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 4.64e+04 | 4.74e+04 | 4.92e+04 | 5.16e+04 | 4.86e+04 | 5.98e+04 | 5.11e+04 | 5.49e+04 | 7.83e+03 | 8.20e+03 | 13.1 | 16.1 | 0.00 | 0.00 | 5.80 | 3.96 | 100. | 0.00 | 64.0 | 66.0 | 10.6 | 13.1 | 0.00 | 0.00 | 4.55 | 5.76 | 63.0 | 0.00 | 65.0 | 55.0 | 14.3 | 15.1 | 0.00 | 0.00 | 1.53 | 5.19 | 0.00 | 0.00 | 72.0 | 59.0 | 11.6 | 12.5 | 0.00 | 0.00 | 19.4 | 16.8 | 0.00 | 6.00 | 67.0 | 54.0 | 10.4 | 13.1 | 0.00 | 0.00 | 7.57 | 8.21 | 48.0 | 0.00 | 67.0 | 77.0 | 7.40 | 8.90 | 0.00 | 0.00 | 4.32 | 4.45 | 0.00 | 0.00 | 85.0 | 85.0 | 9.53 | 11.6 | 0.00 | 0.00 | 11.0 | 9.45 | 0.00 | 0.00 | 86.0 | 81.0 | 10.3 | 12.5 | 0.00 | 0.00 | 1.14 | 5.41 | 17.0 | 19.0 | 62.0 | 76.0 | 10.3 | 9.73 | 0.00 | 0.00 | 13.5 | 10.3 | 11.0 | 7.00 | 83.0 | 76.0 | 12.3 | 13.9 | 0.00 | 0.00 | 9.69 | 8.21 | 10.0 | 0.00 | 64.0 | 58.0 | 3 | 2 | 2 | 3 | 89 | 90 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 4.43e+04 | 4.64e+04 | 4.74e+04 | 4.92e+04 | 4.67e+04 | 5.94e+04 | 5.11e+04 | 5.49e+04 | 7.83e+03 | 8.25e+03 | 12.6 | 15.5 | 0.00 | 0.00 | 5.80 | 4.33 | 100. | 0.00 | 65.0 | 68.0 | 10.1 | 12.7 | 0.00 | 0.00 | 5.09 | 5.41 | 100. | 0.00 | 65.0 | 53.0 | 14.2 | 15.0 | 0.00 | 0.00 | 1.84 | 5.40 | 0.00 | 0.00 | 72.0 | 59.0 | 11.4 | 12.2 | 0.00 | 0.00 | 19.9 | 16.8 | 0.00 | 11.0 | 68.0 | 55.0 | 10.1 | 12.8 | 0.00 | 0.00 | 7.07 | 7.70 | 58.0 | 0.00 | 67.0 | 79.0 | 7.15 | 8.40 | 0.00 | 0.00 | 4.80 | 4.80 | 0.00 | 0.00 | 85.0 | 85.0 | 9.38 | 11.4 | 0.00 | 0.00 | 10.7 | 9.89 | 6.00 | 5.00 | 84.0 | 80.0 | 9.89 | 12.0 | 0.00 | 0.00 | 1.80 | 6.12 | 42.0 | 22.0 | 63.0 | 78.0 | 10.4 | 9.38 | 0.00 | 0.00 | 14.5 | 9.26 | 17.0 | 7.00 | 82.0 | 79.0 | 11.9 | 13.6 | 0.00 | 0.00 | 9.79 | 8.89 | 6.00 | 5.00 | 63.0 | 55.0 | 4 | 3 | 2 | 3 | 89 | 90 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 4.39e+04 | 4.43e+04 | 4.64e+04 | 4.74e+04 | 4.63e+04 | 5.76e+04 | 5.11e+04 | 5.46e+04 | 7.83e+03 | 8.27e+03 | 12.2 | 15.0 | 0.00 | 0.00 | 6.12 | 4.55 | 100. | 0.00 | 66.0 | 71.0 | 9.69 | 12.2 | 0.00 | 0.00 | 5.41 | 5.09 | 100. | 0.00 | 65.0 | 54.0 | 14.0 | 14.9 | 0.00 | 0.00 | 2.52 | 5.62 | 0.00 | 0.00 | 73.0 | 59.0 | 11.2 | 12.0 | 0.00 | 0.00 | 20.1 | 17.3 | 0.00 | 7.00 | 70.0 | 57.0 | 9.80 | 12.4 | 0.00 | 0.00 | 7.07 | 7.59 | 98.0 | 0.00 | 68.0 | 80.0 | 6.60 | 7.90 | 0.00 | 0.00 | 4.80 | 4.21 | 0.00 | 0.00 | 85.0 | 85.0 | 9.13 | 10.9 | 0.00 | 0.00 | 11.0 | 10.9 | 0.00 | 0.00 | 84.0 | 82.0 | 9.49 | 11.5 | 0.00 | 0.00 | 3.60 | 6.12 | 18.0 | 20.0 | 63.0 | 81.0 | 10.6 | 9.13 | 0.00 | 0.00 | 15.0 | 8.65 | 100. | 16.0 | 78.0 | 82.0 | 11.7 | 12.8 | 0.00 | 0.100 | 9.51 | 9.20 | 10.0 | 0.00 | 61.0 | 66.0 | 5 | 4 | 2 | 3 | 89 | 90 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 4.62e+04 | 4.39e+04 | 4.43e+04 | 4.64e+04 | 4.92e+04 | 5.72e+04 | 5.11e+04 | 5.43e+04 | 8.86e+03 | 8.28e+03 | 11.8 | 14.6 | 0.00 | 0.00 | 5.32 | 4.45 | 57.0 | 0.00 | 68.0 | 72.0 | 9.14 | 11.7 | 0.00 | 0.00 | 5.40 | 5.09 | 61.0 | 0.00 | 66.0 | 56.0 | 14.0 | 14.8 | 0.00 | 0.00 | 3.62 | 6.13 | 5.00 | 0.00 | 72.0 | 60.0 | 11.0 | 11.9 | 0.00 | 0.00 | 20.2 | 17.6 | 0.00 | 5.00 | 71.0 | 57.0 | 9.55 | 12.1 | 0.00 | 0.00 | 6.99 | 7.28 | 100. | 0.00 | 71.0 | 81.0 | 6.20 | 7.60 | 0.00 | 0.00 | 4.45 | 4.21 | 0.00 | 0.00 | 83.0 | 83.0 | 8.93 | 10.6 | 0.00 | 0.00 | 11.2 | 11.3 | 6.00 | 5.00 | 85.0 | 83.0 | 8.94 | 11.1 | 0.00 | 0.00 | 4.33 | 6.84 | 19.0 | 20.0 | 65.0 | 81.0 | 10.4 | 8.93 | 0.00 | 0.00 | 15.5 | 8.64 | 14.0 | 67.0 | 77.0 | 85.0 | 11.4 | 12.9 | 0.00 | 0.00 | 8.71 | 9.66 | 13.0 | 100. | 61.0 | 66.0 | 6 | 5 | 2 | 3 | 89 | 90 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 5.19e+04 | 4.62e+04 | 4.39e+04 | 4.43e+04 | 5.49e+04 | 6.04e+04 | 5.11e+04 | 5.41e+04 | 8.86e+03 | 8.28e+03 | 11.3 | 14.1 | 0.00 | 0.00 | 5.48 | 4.38 | 8.00 | 6.00 | 71.0 | 74.0 | 8.64 | 11.3 | 0.00 | 0.00 | 5.45 | 5.05 | 12.0 | 0.00 | 68.0 | 57.0 | 13.9 | 14.7 | 0.00 | 0.00 | 5.35 | 4.33 | 0.00 | 0.00 | 71.0 | 61.0 | 10.9 | 11.7 | 0.00 | 0.00 | 19.9 | 17.6 | 0.00 | 10.0 | 72.0 | 56.0 | 9.15 | 11.8 | 0.00 | 0.00 | 7.57 | 7.59 | 72.0 | 0.00 | 76.0 | 81.0 | 6.10 | 7.40 | 0.00 | 0.00 | 4.21 | 4.55 | 0.00 | 0.00 | 80.0 | 78.0 | 8.63 | 10.2 | 0.00 | 0.00 | 11.0 | 10.2 | 0.00 | 6.00 | 87.0 | 86.0 | 8.54 | 10.7 | 0.00 | 0.00 | 3.98 | 7.24 | 73.0 | 18.0 | 66.0 | 81.0 | 10.5 | 8.63 | 0.00 | 0.00 | 16.7 | 9.42 | 19.0 | 59.0 | 76.0 | 89.0 | 11.6 | 12.7 | 0.00 | 0.00 | 8.21 | 8.89 | 76.0 | 51.0 | 60.0 | 64.0 | 7 | 6 | 2 | 3 | 89 | 90 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 5.15e+04 | 5.26e+04 | 5.12e+04 | 5.03e+04 | 4.26e+04 | 5.41e+04 | 4.19e+04 | 4.89e+04 | 1.03e+04 | 9.72e+03 | 19.0 | 13.9 | 0.00 | 0.00 | 20.9 | 9.78 | 7.00 | 100. | 40.0 | 65.0 | 12.5 | 13.4 | 4.20 | 0.00 | 15.4 | 3.26 | 100. | 100. | 98.0 | 77.0 | 17.0 | 16.1 | 2.70 | 0.00 | 31.7 | 12.1 | 100. | 100. | 82.0 | 77.0 | 16.7 | 10.4 | 0.00 | 0.100 | 7.42 | 17.0 | 100. | 100. | 54.0 | 85.0 | 17.1 | 17.5 | 0.00 | 0.800 | 29.3 | 7.29 | 75.0 | 67.0 | 51.0 | 57.0 | 18.1 | 10.4 | 0.00 | 0.400 | 8.05 | 10.2 | 100. | 100. | 40.0 | 93.0 | 16.4 | 14.9 | 0.00 | 0.100 | 30.1 | 32.4 | 12.0 | 5.00 | 52.0 | 51.0 | 14.9 | 11.9 | 0.600 | 2.80 | 6.41 | 7.56 | 100. | 100. | 91.0 | 97.0 | 13.0 | 12.3 | 0.300 | 0.200 | 34.6 | 37.1 | 13.0 | 14.0 | 72.0 | 76.0 | 18.1 | 14.0 | 0.00 | 0.400 | 16.5 | 28.6 | 6.00 | 7.00 | 51.0 | 63.0 | 14 | 13 | 1 | 2 | 130 | 131 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 5.02e+04 | 5.15e+04 | 5.26e+04 | 5.12e+04 | 4.02e+04 | 5.18e+04 | 4.25e+04 | 4.89e+04 | 1.15e+04 | 9.72e+03 | 19.6 | 15.6 | 0.00 | 0.300 | 20.6 | 13.4 | 36.0 | 100. | 38.0 | 61.0 | 10.7 | 14.2 | 7.60 | 0.100 | 12.9 | 13.7 | 100. | 100. | 98.0 | 75.0 | 16.9 | 17.6 | 0.900 | 0.400 | 35.7 | 26.2 | 100. | 7.00 | 83.0 | 67.0 | 18.6 | 12.7 | 0.00 | 0.400 | 9.47 | 19.8 | 100. | 100. | 44.0 | 76.0 | 17.2 | 17.0 | 0.00 | 1.00 | 25.8 | 7.99 | 69.0 | 100. | 51.0 | 58.0 | 18.2 | 10.7 | 0.00 | 0.500 | 9.37 | 11.9 | 100. | 100. | 40.0 | 90.0 | 16.5 | 14.8 | 0.00 | 0.100 | 30.1 | 35.7 | 24.0 | 24.0 | 51.0 | 55.0 | 14.3 | 11.8 | 1.30 | 2.60 | 5.94 | 5.51 | 100. | 100. | 92.0 | 97.0 | 13.0 | 11.7 | 0.400 | 0.400 | 33.8 | 38.0 | 12.0 | 84.0 | 71.0 | 84.0 | 18.1 | 14.9 | 0.00 | 0.100 | 13.3 | 25.8 | 12.0 | -1.00 | 49.0 | 57.0 | 15 | 14 | 1 | 2 | 130 | 131 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 4.88e+04 | 5.02e+04 | 5.15e+04 | 5.26e+04 | 3.86e+04 | 4.91e+04 | 4.26e+04 | 4.88e+04 | 1.05e+04 | 9.72e+03 | 19.4 | 14.8 | 0.00 | 0.400 | 19.1 | 21.3 | 100. | 100. | 37.0 | 62.0 | 10.8 | 13.6 | 6.30 | 0.600 | 7.99 | 22.1 | 100. | 100. | 98.0 | 81.0 | 15.9 | 17.6 | 1.60 | 0.600 | 37.2 | 29.1 | 100. | 54.0 | 93.0 | 66.0 | 19.1 | 12.2 | 0.00 | 0.500 | 8.67 | 19.9 | 100. | 100. | 43.0 | 78.0 | 17.4 | 16.9 | 0.00 | 0.500 | 22.5 | 8.77 | 60.0 | 100. | 52.0 | 58.0 | 18.1 | 10.9 | 0.00 | 0.600 | 11.9 | 12.4 | 100. | 100. | 45.0 | 90.0 | 16.4 | 12.7 | 0.00 | 0.400 | 29.0 | 33.2 | 50.0 | 99.0 | 51.0 | 73.0 | 14.1 | 12.6 | 0.500 | 0.100 | 5.05 | 4.33 | 100. | 100. | 86.0 | 93.0 | 12.9 | 12.0 | 0.300 | 0.400 | 31.1 | 38.8 | 7.00 | 77.0 | 68.0 | 79.0 | 18.2 | 14.9 | 0.00 | 0.00 | 13.6 | 23.3 | 12.0 | 0.00 | 49.0 | 57.0 | 16 | 15 | 1 | 2 | 130 | 131 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 4.73e+04 | 4.88e+04 | 5.02e+04 | 5.15e+04 | 3.76e+04 | 4.74e+04 | 4.28e+04 | 4.88e+04 | 1.02e+04 | 9.72e+03 | 19.3 | 13.9 | 0.00 | 0.00 | 17.1 | 11.2 | 96.0 | 100. | 38.0 | 60.0 | 10.8 | 11.0 | 4.50 | 1.40 | 11.2 | 14.8 | 100. | 100. | 98.0 | 92.0 | 15.8 | 18.0 | 1.20 | 0.00 | 36.6 | 31.6 | 100. | 13.0 | 95.0 | 61.0 | 19.1 | 13.4 | 0.00 | 0.500 | 7.34 | 24.7 | 100. | 96.0 | 46.0 | 73.0 | 16.5 | 16.9 | 0.100 | 0.500 | 19.4 | 11.3 | 100. | 100. | 57.0 | 58.0 | 17.0 | 11.6 | 0.00 | 0.600 | 10.2 | 14.1 | 100. | 100. | 49.0 | 83.0 | 16.1 | 13.8 | 0.00 | 0.300 | 28.2 | 34.2 | 19.0 | 29.0 | 52.0 | 68.0 | 13.3 | 13.5 | 0.400 | 0.00 | 4.33 | 7.13 | 100. | 100. | 90.0 | 90.0 | 13.0 | 12.3 | 0.100 | 0.300 | 28.7 | 37.5 | 11.0 | 19.0 | 64.0 | 73.0 | 17.9 | 14.9 | 0.00 | 0.00 | 13.4 | 19.5 | 15.0 | 0.00 | 49.0 | 57.0 | 17 | 16 | 1 | 2 | 130 | 131 | 2,021 | 2,021 | 0 | 0 | ||||||||||||||||||||
| 4.64e+04 | 4.73e+04 | 4.88e+04 | 5.02e+04 | 3.74e+04 | 4.68e+04 | 4.32e+04 | 4.88e+04 | 8.68e+03 | 9.72e+03 | 17.9 | 17.3 | 0.00 | 0.00 | 16.7 | 21.7 | 100. | 73.0 | 45.0 | 42.0 | 10.9 | 12.0 | 4.80 | 0.400 | 11.5 | 15.8 | 100. | 100. | 98.0 | 88.0 | 15.8 | 18.4 | 0.700 | 0.00 | 36.1 | 30.0 | 100. | 6.00 | 95.0 | 56.0 | 17.4 | 13.6 | 0.300 | 0.200 | 6.19 | 21.7 | 100. | 100. | 63.0 | 65.0 | 17.0 | 16.4 | 0.100 | 0.600 | 21.2 | 14.1 | 100. | 100. | 55.0 | 61.0 | 15.1 | 13.0 | 0.200 | 0.300 | 9.79 | 12.0 | 100. | 100. | 67.0 | 61.0 | 15.0 | 12.9 | 0.00 | 0.200 | 26.9 | 29.7 | 100. | 100. | 57.0 | 67.0 | 13.2 | 14.1 | 0.200 | 0.200 | 1.02 | 7.42 | 100. | 100. | 90.0 | 87.0 | 12.5 | 12.1 | 0.100 | 0.200 | 25.5 | 37.6 | 10.0 | 15.0 | 67.0 | 73.0 | 17.8 | 14.6 | 0.00 | 0.00 | 10.9 | 15.7 | 17.0 | 5.00 | 49.0 | 57.0 | 18 | 17 | 1 | 2 | 130 | 131 | 2,021 | 2,021 | 0 | 0 | 
load_mw
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.37e+03
 - Median ± IQR
 - 5.06e+04 ± 8.51e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_lag_1h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.37e+03
 - Median ± IQR
 - 5.06e+04 ± 8.48e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_lag_2h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.37e+03
 - Median ± IQR
 - 5.06e+04 ± 8.48e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_lag_3h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.37e+03
 - Median ± IQR
 - 5.06e+04 ± 8.48e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_lag_1d
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    966 (96.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.10e+04 ± 6.29e+03
 - Median ± IQR
 - 5.08e+04 ± 8.27e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_lag_1w
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    967 (96.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.20e+04 ± 6.28e+03
 - Median ± IQR
 - 5.16e+04 ± 8.39e+03
 - Min | Max
 - 3.71e+04 | 7.04e+04
  
load_mw_rolling_median_24h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    319 (31.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 4.96e+03
 - Median ± IQR
 - 5.04e+04 ± 5.76e+03
 - Min | Max
 - 3.97e+04 | 6.15e+04
  
load_mw_rolling_median_7d
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    340 (34.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.13e+04 ± 2.96e+03
 - Median ± IQR
 - 4.98e+04 ± 5.04e+03
 - Min | Max
 - 4.73e+04 | 5.62e+04
  
load_mw_iqr_24h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    404 (40.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.95e+03 ± 1.46e+03
 - Median ± IQR
 - 5.60e+03 ± 1.70e+03
 - Min | Max
 - 3.17e+03 | 1.47e+04
  
load_mw_iqr_7d
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    515 (51.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 7.31e+03 ± 1.82e+03
 - Median ± IQR
 - 6.79e+03 ± 1.92e+03
 - Min | Max
 - 5.08e+03 | 1.29e+04
  
weather_temperature_2m_paris_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    219 (21.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.8 ± 4.79
 - Median ± IQR
 - 10.4 ± 6.40
 - Min | Max
 - 1.16 | 26.6
  
weather_temperature_2m_paris_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    215 (21.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.7 ± 4.67
 - Median ± IQR
 - 10.4 ± 6.30
 - Min | Max
 - 1.16 | 26.6
  
weather_precipitation_paris_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 18 (1.8%)
 - Mean ± Std
 - 0.0510 ± 0.242
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 3.00
 
weather_precipitation_paris_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 18 (1.8%)
 - Mean ± Std
 - 0.0517 ± 0.242
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 3.00
 
weather_wind_speed_10m_paris_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    617 (61.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.2 ± 5.65
 - Median ± IQR
 - 11.4 ± 8.67
 - Min | Max
 - 1.08 | 29.9
  
weather_wind_speed_10m_paris_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    621 (62.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.3 ± 5.65
 - Median ± IQR
 - 11.5 ± 8.39
 - Min | Max
 - 1.08 | 29.9
  
weather_cloud_cover_paris_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    82 (8.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 52.8 ± 45.0
 - Median ± IQR
 - 62.0 ± 94.0
 - Min | Max
 - 0.00 | 100.
  
weather_cloud_cover_paris_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    82 (8.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 54.5 ± 44.9
 - Median ± IQR
 - 72.0 ± 94.0
 - Min | Max
 - 0.00 | 100.
  
weather_soil_moisture_1_to_3cm_paris_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_paris_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_paris_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    73 (7.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 56.4 ± 17.2
 - Median ± IQR
 - 56.0 ± 25.0
 - Min | Max
 - 24.0 | 96.0
  
weather_relative_humidity_2m_paris_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    73 (7.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 56.8 ± 17.2
 - Median ± IQR
 - 57.0 ± 26.0
 - Min | Max
 - 24.0 | 96.0
  
weather_temperature_2m_lyon_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    249 (24.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 11.3 ± 5.23
 - Median ± IQR
 - 10.8 ± 6.80
 - Min | Max
 - -0.465 | 24.6
  
weather_temperature_2m_lyon_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    245 (24.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 11.2 ± 5.14
 - Median ± IQR
 - 10.8 ± 6.60
 - Min | Max
 - -0.465 | 24.6
  
weather_precipitation_lyon_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 32 (3.2%)
 - Mean ± Std
 - 0.131 ± 0.584
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 7.60
 
weather_precipitation_lyon_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 35 (3.5%)
 - Mean ± Std
 - 0.155 ± 0.630
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 7.60
 
weather_wind_speed_10m_lyon_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    571 (57.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.6 ± 6.92
 - Median ± IQR
 - 8.50 ± 9.23
 - Min | Max
 - 0.00 | 39.2
  
weather_wind_speed_10m_lyon_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    574 (57.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.6 ± 6.95
 - Median ± IQR
 - 8.40 ± 9.35
 - Min | Max
 - 0.00 | 39.2
  
weather_cloud_cover_lyon_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    82 (8.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 54.0 ± 46.0
 - Median ± IQR
 - 71.0 ± 95.0
 - Min | Max
 - 0.00 | 101.
  
weather_cloud_cover_lyon_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    81 (8.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 55.9 ± 45.9
 - Median ± IQR
 - 83.0 ± 94.0
 - Min | Max
 - 0.00 | 101.
  
weather_soil_moisture_1_to_3cm_lyon_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_lyon_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_lyon_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    77 (7.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 63.5 ± 19.4
 - Median ± IQR
 - 62.0 ± 31.0
 - Min | Max
 - 22.0 | 98.0
  
weather_relative_humidity_2m_lyon_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    77 (7.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 64.4 ± 19.8
 - Median ± IQR
 - 63.0 ± 33.0
 - Min | Max
 - 22.0 | 98.0
  
weather_temperature_2m_marseille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    161 (16.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 14.0 ± 2.78
 - Median ± IQR
 - 14.5 ± 3.60
 - Min | Max
 - 4.78 | 21.3
  
weather_temperature_2m_marseille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    160 (16.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 14.0 ± 2.79
 - Median ± IQR
 - 14.6 ± 3.70
 - Min | Max
 - 4.78 | 21.3
  
weather_precipitation_marseille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 29 (2.9%)
 - Mean ± Std
 - 0.0983 ± 0.493
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 6.10
 
weather_precipitation_marseille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 29 (2.9%)
 - Mean ± Std
 - 0.114 ± 0.505
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 6.10
 
weather_wind_speed_10m_marseille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    734 (73.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 17.5 ± 14.2
 - Median ± IQR
 - 12.7 ± 13.8
 - Min | Max
 - 0.805 | 68.6
  
weather_wind_speed_10m_marseille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    742 (74.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 17.9 ± 14.2
 - Median ± IQR
 - 13.1 ± 14.7
 - Min | Max
 - 0.805 | 68.6
  
weather_cloud_cover_marseille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    85 (8.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 51.9 ± 45.7
 - Median ± IQR
 - 60.0 ± 95.0
 - Min | Max
 - 0.00 | 100.
  
weather_cloud_cover_marseille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    85 (8.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 53.3 ± 45.5
 - Median ± IQR
 - 66.0 ± 95.0
 - Min | Max
 - 0.00 | 100.
  
weather_soil_moisture_1_to_3cm_marseille_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_marseille_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_marseille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    69 (6.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 62.6 ± 14.0
 - Median ± IQR
 - 61.0 ± 18.0
 - Min | Max
 - 27.0 | 95.0
  
weather_relative_humidity_2m_marseille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    69 (6.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 63.1 ± 14.4
 - Median ± IQR
 - 61.0 ± 19.0
 - Min | Max
 - 27.0 | 95.0
  
weather_temperature_2m_toulouse_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    223 (22.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.4 ± 4.39
 - Median ± IQR
 - 12.1 ± 5.50
 - Min | Max
 - 1.48 | 27.2
  
weather_temperature_2m_toulouse_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    221 (22.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.3 ± 4.35
 - Median ± IQR
 - 12.1 ± 5.50
 - Min | Max
 - 1.48 | 27.2
  
weather_precipitation_toulouse_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 16 (1.6%)
 - Mean ± Std
 - 0.0487 ± 0.192
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 2.20
 
weather_precipitation_toulouse_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 18 (1.8%)
 - Mean ± Std
 - 0.0641 ± 0.228
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 2.20
 
weather_wind_speed_10m_toulouse_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    668 (66.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 13.1 ± 6.86
 - Median ± IQR
 - 12.3 ± 10.0
 - Min | Max
 - 0.360 | 39.5
  
weather_wind_speed_10m_toulouse_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    669 (66.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 13.0 ± 6.86
 - Median ± IQR
 - 12.1 ± 10.0
 - Min | Max
 - 0.360 | 39.5
  
weather_cloud_cover_toulouse_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    84 (8.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 59.9 ± 44.6
 - Median ± IQR
 - 92.0 ± 94.0
 - Min | Max
 - 0.00 | 101.
  
weather_cloud_cover_toulouse_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    85 (8.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 61.8 ± 44.1
 - Median ± IQR
 - 98.0 ± 93.0
 - Min | Max
 - 0.00 | 101.
  
weather_soil_moisture_1_to_3cm_toulouse_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_toulouse_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_toulouse_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    76 (7.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 62.4 ± 19.4
 - Median ± IQR
 - 60.0 ± 32.0
 - Min | Max
 - 22.0 | 98.0
  
weather_relative_humidity_2m_toulouse_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    76 (7.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 63.1 ± 19.7
 - Median ± IQR
 - 61.0 ± 34.0
 - Min | Max
 - 22.0 | 98.0
  
weather_temperature_2m_lille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    226 (22.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.43 ± 4.71
 - Median ± IQR
 - 7.65 ± 6.50
 - Min | Max
 - -0.850 | 24.5
  
weather_temperature_2m_lille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    220 (22.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.39 ± 4.63
 - Median ± IQR
 - 7.65 ± 6.50
 - Min | Max
 - -0.850 | 24.5
  
weather_precipitation_lille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 17 (1.7%)
 - Mean ± Std
 - 0.0482 ± 0.249
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 5.80
 
weather_precipitation_lille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 18 (1.8%)
 - Mean ± Std
 - 0.0522 ± 0.253
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 5.80
 
weather_wind_speed_10m_lille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    692 (69.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 14.1 ± 7.04
 - Median ± IQR
 - 13.6 ± 9.68
 - Min | Max
 - 0.720 | 43.5
  
weather_wind_speed_10m_lille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    693 (69.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 14.1 ± 7.08
 - Median ± IQR
 - 13.6 ± 9.75
 - Min | Max
 - 0.720 | 43.5
  
weather_cloud_cover_lille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    87 (8.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 49.8 ± 43.6
 - Median ± IQR
 - 32.0 ± 93.0
 - Min | Max
 - 0.00 | 101.
  
weather_cloud_cover_lille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    87 (8.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 50.9 ± 43.7
 - Median ± IQR
 - 36.0 ± 92.0
 - Min | Max
 - 0.00 | 101.
  
weather_soil_moisture_1_to_3cm_lille_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_lille_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_lille_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    69 (6.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 64.2 ± 16.5
 - Median ± IQR
 - 65.0 ± 26.0
 - Min | Max
 - 29.0 | 97.0
  
weather_relative_humidity_2m_lille_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    69 (6.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 64.5 ± 16.5
 - Median ± IQR
 - 65.0 ± 27.0
 - Min | Max
 - 29.0 | 97.0
  
weather_temperature_2m_limoges_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    279 (27.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 9.89 ± 5.99
 - Median ± IQR
 - 9.60 ± 7.50
 - Min | Max
 - -4.30 | 25.7
  
weather_temperature_2m_limoges_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    277 (27.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 9.79 ± 5.90
 - Median ± IQR
 - 9.50 ± 7.40
 - Min | Max
 - -4.30 | 25.7
  
weather_precipitation_limoges_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 25 (2.5%)
 - Mean ± Std
 - 0.0960 ± 0.480
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 6.70
 
weather_precipitation_limoges_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 25 (2.5%)
 - Mean ± Std
 - 0.103 ± 0.483
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 6.70
 
weather_wind_speed_10m_limoges_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    466 (46.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 7.90 ± 4.39
 - Median ± IQR
 - 6.62 ± 6.50
 - Min | Max
 - 0.00 | 21.6
  
weather_wind_speed_10m_limoges_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    474 (47.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 7.94 ± 4.40
 - Median ± IQR
 - 6.83 ± 6.42
 - Min | Max
 - 0.00 | 21.6
  
weather_cloud_cover_limoges_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    83 (8.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 54.4 ± 45.2
 - Median ± IQR
 - 69.0 ± 94.0
 - Min | Max
 - 0.00 | 100.
  
weather_cloud_cover_limoges_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    83 (8.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 56.2 ± 45.0
 - Median ± IQR
 - 79.0 ± 94.0
 - Min | Max
 - 0.00 | 100.
  
weather_soil_moisture_1_to_3cm_limoges_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_limoges_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_limoges_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    81 (8.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 68.6 ± 23.4
 - Median ± IQR
 - 71.0 ± 42.0
 - Min | Max
 - 20.0 | 100.
  
weather_relative_humidity_2m_limoges_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    81 (8.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 69.4 ± 23.5
 - Median ± IQR
 - 72.0 ± 42.0
 - Min | Max
 - 20.0 | 100.
  
weather_temperature_2m_nantes_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    245 (24.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 9.76 ± 5.31
 - Median ± IQR
 - 10.2 ± 7.40
 - Min | Max
 - -2.47 | 22.7
  
weather_temperature_2m_nantes_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    243 (24.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 9.67 ± 5.22
 - Median ± IQR
 - 10.1 ± 7.20
 - Min | Max
 - -2.47 | 22.7
  
weather_precipitation_nantes_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 14 (1.4%)
 - Mean ± Std
 - 0.0275 ± 0.139
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 2.20
 
weather_precipitation_nantes_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 15 (1.5%)
 - Mean ± Std
 - 0.0328 ± 0.157
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 2.20
 
weather_wind_speed_10m_nantes_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    713 (71.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 16.0 ± 7.37
 - Median ± IQR
 - 14.3 ± 10.0
 - Min | Max
 - 1.48 | 42.3
  
weather_wind_speed_10m_nantes_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    720 (72.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 16.1 ± 7.48
 - Median ± IQR
 - 14.5 ± 10.3
 - Min | Max
 - 1.48 | 42.3
  
weather_cloud_cover_nantes_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    87 (8.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 49.7 ± 45.0
 - Median ± IQR
 - 32.0 ± 94.0
 - Min | Max
 - 0.00 | 100.
  
weather_cloud_cover_nantes_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    87 (8.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 51.2 ± 44.9
 - Median ± IQR
 - 47.0 ± 94.0
 - Min | Max
 - 0.00 | 100.
  
weather_soil_moisture_1_to_3cm_nantes_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_nantes_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_nantes_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    59 (5.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 72.8 ± 15.7
 - Median ± IQR
 - 74.0 ± 28.0
 - Min | Max
 - 39.0 | 98.0
  
weather_relative_humidity_2m_nantes_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    59 (5.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 72.9 ± 15.8
 - Median ± IQR
 - 74.0 ± 29.0
 - Min | Max
 - 39.0 | 98.0
  
weather_temperature_2m_strasbourg_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    236 (23.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 9.53 ± 4.83
 - Median ± IQR
 - 9.04 ± 6.20
 - Min | Max
 - -0.563 | 26.2
  
weather_temperature_2m_strasbourg_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    230 (23.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 9.46 ± 4.74
 - Median ± IQR
 - 9.04 ± 6.00
 - Min | Max
 - -0.563 | 26.2
  
weather_precipitation_strasbourg_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 21 (2.1%)
 - Mean ± Std
 - 0.0675 ± 0.246
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 2.80
 
weather_precipitation_strasbourg_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 25 (2.5%)
 - Mean ± Std
 - 0.0925 ± 0.349
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 4.30
 
weather_wind_speed_10m_strasbourg_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    556 (55.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.3 ± 5.50
 - Median ± IQR
 - 9.69 ± 7.95
 - Min | Max
 - 0.509 | 29.9
  
weather_wind_speed_10m_strasbourg_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    558 (55.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.3 ± 5.45
 - Median ± IQR
 - 9.69 ± 7.92
 - Min | Max
 - 0.509 | 29.9
  
weather_cloud_cover_strasbourg_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    85 (8.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 64.0 ± 42.9
 - Median ± IQR
 - 99.0 ± 89.0
 - Min | Max
 - 0.00 | 100.
  
weather_cloud_cover_strasbourg_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    84 (8.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 65.3 ± 42.8
 - Median ± IQR
 - 100. ± 89.0
 - Min | Max
 - 0.00 | 100.
  
weather_soil_moisture_1_to_3cm_strasbourg_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_strasbourg_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_strasbourg_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    70 (7.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 65.1 ± 17.3
 - Median ± IQR
 - 66.0 ± 26.0
 - Min | Max
 - 29.0 | 98.0
  
weather_relative_humidity_2m_strasbourg_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    71 (7.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 66.0 ± 17.8
 - Median ± IQR
 - 67.0 ± 28.0
 - Min | Max
 - 29.0 | 99.0
  
weather_temperature_2m_brest_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    203 (20.3%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.99 ± 4.30
 - Median ± IQR
 - 9.23 ± 6.10
 - Min | Max
 - 0.928 | 23.2
  
weather_temperature_2m_brest_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    199 (19.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 8.89 ± 4.21
 - Median ± IQR
 - 9.03 ± 6.00
 - Min | Max
 - 0.928 | 23.2
  
weather_precipitation_brest_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 12 (1.2%)
 - Mean ± Std
 - 0.0332 ± 0.118
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 1.40
 
weather_precipitation_brest_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 13 (1.3%)
 - Mean ± Std
 - 0.0387 ± 0.131
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 1.50
 
weather_wind_speed_10m_brest_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    779 (77.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 18.0 ± 8.97
 - Median ± IQR
 - 16.7 ± 12.7
 - Min | Max
 - 0.805 | 44.9
  
weather_wind_speed_10m_brest_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    786 (78.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 18.2 ± 9.11
 - Median ± IQR
 - 17.0 ± 13.0
 - Min | Max
 - 0.805 | 44.9
  
weather_cloud_cover_brest_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    91 (9.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 55.2 ± 43.4
 - Median ± IQR
 - 66.0 ± 93.0
 - Min | Max
 - 0.00 | 100.
  
weather_cloud_cover_brest_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    91 (9.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 55.5 ± 43.4
 - Median ± IQR
 - 68.0 ± 93.0
 - Min | Max
 - 0.00 | 100.
  
weather_soil_moisture_1_to_3cm_brest_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_brest_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_brest_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    57 (5.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 72.6 ± 13.6
 - Median ± IQR
 - 74.0 ± 23.0
 - Min | Max
 - 43.0 | 99.0
  
weather_relative_humidity_2m_brest_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    57 (5.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 72.9 ± 13.6
 - Median ± IQR
 - 75.0 ± 22.0
 - Min | Max
 - 43.0 | 99.0
  
weather_temperature_2m_bayonne_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    247 (24.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.2 ± 5.01
 - Median ± IQR
 - 12.1 ± 5.00
 - Min | Max
 - -0.202 | 29.4
  
weather_temperature_2m_bayonne_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    241 (24.1%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 12.1 ± 4.89
 - Median ± IQR
 - 12.0 ± 4.90
 - Min | Max
 - -0.202 | 29.4
  
weather_precipitation_bayonne_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 26 (2.6%)
 - Mean ± Std
 - 0.0919 ± 0.420
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 4.40
 
weather_precipitation_bayonne_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 29 (2.9%)
 - Mean ± Std
 - 0.109 ± 0.468
 - Median ± IQR
 - 0.00 ± 0.00
 - Min | Max
 - 0.00 | 5.40
 
weather_wind_speed_10m_bayonne_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    537 (53.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.1 ± 5.11
 - Median ± IQR
 - 9.00 ± 6.83
 - Min | Max
 - 0.509 | 33.3
  
weather_wind_speed_10m_bayonne_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    548 (54.8%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 10.4 ± 5.45
 - Median ± IQR
 - 9.11 ± 7.36
 - Min | Max
 - 0.509 | 33.3
  
weather_cloud_cover_bayonne_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    87 (8.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 61.4 ± 44.2
 - Median ± IQR
 - 97.0 ± 93.0
 - Min | Max
 - -1.00 | 100.
  
weather_cloud_cover_bayonne_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    87 (8.7%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 62.4 ± 44.1
 - Median ± IQR
 - 100. ± 93.0
 - Min | Max
 - -1.00 | 100.
  
weather_soil_moisture_1_to_3cm_bayonne_future_1h
Float32- Null values
 - 1,000 (100.0%)
 
weather_soil_moisture_1_to_3cm_bayonne_future_24h
Float32- Null values
 - 1,000 (100.0%)
 
weather_relative_humidity_2m_bayonne_future_1h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    70 (7.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 70.5 ± 16.1
 - Median ± IQR
 - 72.0 ± 25.0
 - Min | Max
 - 25.0 | 98.0
  
weather_relative_humidity_2m_bayonne_future_24h
Float32- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    69 (6.9%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 71.0 ± 15.9
 - Median ± IQR
 - 72.0 ± 25.0
 - Min | Max
 - 25.0 | 98.0
  
cal_hour_of_day_future_1h
Int8- Null values
 - 0 (0.0%)
 - Unique values
 - 24 (2.4%)
 - Mean ± Std
 - 11.5 ± 6.90
 - Median ± IQR
 - 11.0 ± 11.0
 - Min | Max
 - 0.00 | 23.0
 
cal_hour_of_day_future_24h
Int8- Null values
 - 0 (0.0%)
 - Unique values
 - 24 (2.4%)
 - Mean ± Std
 - 11.5 ± 6.90
 - Median ± IQR
 - 11.0 ± 11.0
 - Min | Max
 - 0.00 | 23.0
 
cal_day_of_week_future_1h
Int8- Null values
 - 0 (0.0%)
 - Unique values
 - 7 (0.7%)
 - Mean ± Std
 - 4.02 ± 1.99
 - Median ± IQR
 - 4.00 ± 4.00
 - Min | Max
 - 1.00 | 7.00
 
cal_day_of_week_future_24h
Int8- Null values
 - 0 (0.0%)
 - Unique values
 - 7 (0.7%)
 - Mean ± Std
 - 4.01 ± 2.00
 - Median ± IQR
 - 4.00 ± 4.00
 - Min | Max
 - 1.00 | 7.00
 
cal_day_of_year_future_1h
Int16- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    42 (4.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 109. ± 12.0
 - Median ± IQR
 - 109. ± 21.0
 - Min | Max
 - 89.0 | 130.
  
cal_day_of_year_future_24h
Int16- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    42 (4.2%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 110. ± 12.0
 - Median ± IQR
 - 110. ± 21.0
 - Min | Max
 - 90.0 | 131.
  
cal_year_future_1h
Int32- Null values
 - 0 (0.0%)
 
2021
cal_year_future_24h
Int32- Null values
 - 0 (0.0%)
 
2021
cal_is_holiday_future_1h
Boolean- Null values
 - 0 (0.0%)
 - Unique values
 - 2 (0.2%)
 
cal_is_holiday_future_24h
Boolean- Null values
 - 0 (0.0%)
 - Unique values
 - 2 (0.2%)
 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
                    
    
    Column name
    
     | 
                    
    
    dtype
    
     | 
                    
    
    Is sorted
    
     | 
                    
    
    Null values
    
     | 
                    
    
    Unique values
    
     | 
                    
    
    Mean
    
     | 
                    
    
    Std
    
     | 
                    
    
    Min
    
     | 
                    
    
    Median
    
     | 
                    
    
    Max
    
     | 
                
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | load_mw | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 | 
| 1 | load_mw_lag_1h | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 | 
| 2 | load_mw_lag_2h | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 | 
| 3 | load_mw_lag_3h | Float64 | False | 0 (0.0%) | 965 (96.5%) | 5.08e+04 | 6.37e+03 | 3.35e+04 | 5.06e+04 | 6.95e+04 | 
| 4 | load_mw_lag_1d | Float64 | False | 0 (0.0%) | 966 (96.6%) | 5.10e+04 | 6.29e+03 | 3.35e+04 | 5.08e+04 | 6.95e+04 | 
| 5 | load_mw_lag_1w | Float64 | False | 0 (0.0%) | 967 (96.7%) | 5.20e+04 | 6.28e+03 | 3.71e+04 | 5.16e+04 | 7.04e+04 | 
| 6 | load_mw_rolling_median_24h | Float64 | False | 0 (0.0%) | 319 (31.9%) | 5.08e+04 | 4.96e+03 | 3.97e+04 | 5.04e+04 | 6.15e+04 | 
| 7 | load_mw_rolling_median_7d | Float64 | False | 0 (0.0%) | 340 (34.0%) | 5.13e+04 | 2.96e+03 | 4.73e+04 | 4.98e+04 | 5.62e+04 | 
| 8 | load_mw_iqr_24h | Float64 | False | 0 (0.0%) | 404 (40.4%) | 5.95e+03 | 1.46e+03 | 3.17e+03 | 5.60e+03 | 1.47e+04 | 
| 9 | load_mw_iqr_7d | Float64 | False | 0 (0.0%) | 515 (51.5%) | 7.31e+03 | 1.82e+03 | 5.08e+03 | 6.79e+03 | 1.29e+04 | 
| 10 | weather_temperature_2m_paris_future_1h | Float32 | False | 0 (0.0%) | 219 (21.9%) | 10.8 | 4.79 | 1.16 | 10.4 | 26.6 | 
| 11 | weather_temperature_2m_paris_future_24h | Float32 | False | 0 (0.0%) | 215 (21.5%) | 10.7 | 4.67 | 1.16 | 10.4 | 26.6 | 
| 12 | weather_precipitation_paris_future_1h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0510 | 0.242 | 0.00 | 0.00 | 3.00 | 
| 13 | weather_precipitation_paris_future_24h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0517 | 0.242 | 0.00 | 0.00 | 3.00 | 
| 14 | weather_wind_speed_10m_paris_future_1h | Float32 | False | 0 (0.0%) | 617 (61.7%) | 12.2 | 5.65 | 1.08 | 11.4 | 29.9 | 
| 15 | weather_wind_speed_10m_paris_future_24h | Float32 | False | 0 (0.0%) | 621 (62.1%) | 12.3 | 5.65 | 1.08 | 11.5 | 29.9 | 
| 16 | weather_cloud_cover_paris_future_1h | Float32 | False | 0 (0.0%) | 82 (8.2%) | 52.8 | 45.0 | 0.00 | 62.0 | 100. | 
| 17 | weather_cloud_cover_paris_future_24h | Float32 | False | 0 (0.0%) | 82 (8.2%) | 54.5 | 44.9 | 0.00 | 72.0 | 100. | 
| 18 | weather_soil_moisture_1_to_3cm_paris_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 19 | weather_soil_moisture_1_to_3cm_paris_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 20 | weather_relative_humidity_2m_paris_future_1h | Float32 | False | 0 (0.0%) | 73 (7.3%) | 56.4 | 17.2 | 24.0 | 56.0 | 96.0 | 
| 21 | weather_relative_humidity_2m_paris_future_24h | Float32 | False | 0 (0.0%) | 73 (7.3%) | 56.8 | 17.2 | 24.0 | 57.0 | 96.0 | 
| 22 | weather_temperature_2m_lyon_future_1h | Float32 | False | 0 (0.0%) | 249 (24.9%) | 11.3 | 5.23 | -0.465 | 10.8 | 24.6 | 
| 23 | weather_temperature_2m_lyon_future_24h | Float32 | False | 0 (0.0%) | 245 (24.5%) | 11.2 | 5.14 | -0.465 | 10.8 | 24.6 | 
| 24 | weather_precipitation_lyon_future_1h | Float32 | False | 0 (0.0%) | 32 (3.2%) | 0.131 | 0.584 | 0.00 | 0.00 | 7.60 | 
| 25 | weather_precipitation_lyon_future_24h | Float32 | False | 0 (0.0%) | 35 (3.5%) | 0.155 | 0.630 | 0.00 | 0.00 | 7.60 | 
| 26 | weather_wind_speed_10m_lyon_future_1h | Float32 | False | 0 (0.0%) | 571 (57.1%) | 10.6 | 6.92 | 0.00 | 8.50 | 39.2 | 
| 27 | weather_wind_speed_10m_lyon_future_24h | Float32 | False | 0 (0.0%) | 574 (57.4%) | 10.6 | 6.95 | 0.00 | 8.40 | 39.2 | 
| 28 | weather_cloud_cover_lyon_future_1h | Float32 | False | 0 (0.0%) | 82 (8.2%) | 54.0 | 46.0 | 0.00 | 71.0 | 101. | 
| 29 | weather_cloud_cover_lyon_future_24h | Float32 | False | 0 (0.0%) | 81 (8.1%) | 55.9 | 45.9 | 0.00 | 83.0 | 101. | 
| 30 | weather_soil_moisture_1_to_3cm_lyon_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 31 | weather_soil_moisture_1_to_3cm_lyon_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 32 | weather_relative_humidity_2m_lyon_future_1h | Float32 | False | 0 (0.0%) | 77 (7.7%) | 63.5 | 19.4 | 22.0 | 62.0 | 98.0 | 
| 33 | weather_relative_humidity_2m_lyon_future_24h | Float32 | False | 0 (0.0%) | 77 (7.7%) | 64.4 | 19.8 | 22.0 | 63.0 | 98.0 | 
| 34 | weather_temperature_2m_marseille_future_1h | Float32 | False | 0 (0.0%) | 161 (16.1%) | 14.0 | 2.78 | 4.78 | 14.5 | 21.3 | 
| 35 | weather_temperature_2m_marseille_future_24h | Float32 | False | 0 (0.0%) | 160 (16.0%) | 14.0 | 2.79 | 4.78 | 14.6 | 21.3 | 
| 36 | weather_precipitation_marseille_future_1h | Float32 | False | 0 (0.0%) | 29 (2.9%) | 0.0983 | 0.493 | 0.00 | 0.00 | 6.10 | 
| 37 | weather_precipitation_marseille_future_24h | Float32 | False | 0 (0.0%) | 29 (2.9%) | 0.114 | 0.505 | 0.00 | 0.00 | 6.10 | 
| 38 | weather_wind_speed_10m_marseille_future_1h | Float32 | False | 0 (0.0%) | 734 (73.4%) | 17.5 | 14.2 | 0.805 | 12.7 | 68.6 | 
| 39 | weather_wind_speed_10m_marseille_future_24h | Float32 | False | 0 (0.0%) | 742 (74.2%) | 17.9 | 14.2 | 0.805 | 13.1 | 68.6 | 
| 40 | weather_cloud_cover_marseille_future_1h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 51.9 | 45.7 | 0.00 | 60.0 | 100. | 
| 41 | weather_cloud_cover_marseille_future_24h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 53.3 | 45.5 | 0.00 | 66.0 | 100. | 
| 42 | weather_soil_moisture_1_to_3cm_marseille_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 43 | weather_soil_moisture_1_to_3cm_marseille_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 44 | weather_relative_humidity_2m_marseille_future_1h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 62.6 | 14.0 | 27.0 | 61.0 | 95.0 | 
| 45 | weather_relative_humidity_2m_marseille_future_24h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 63.1 | 14.4 | 27.0 | 61.0 | 95.0 | 
| 46 | weather_temperature_2m_toulouse_future_1h | Float32 | False | 0 (0.0%) | 223 (22.3%) | 12.4 | 4.39 | 1.48 | 12.1 | 27.2 | 
| 47 | weather_temperature_2m_toulouse_future_24h | Float32 | False | 0 (0.0%) | 221 (22.1%) | 12.3 | 4.35 | 1.48 | 12.1 | 27.2 | 
| 48 | weather_precipitation_toulouse_future_1h | Float32 | False | 0 (0.0%) | 16 (1.6%) | 0.0487 | 0.192 | 0.00 | 0.00 | 2.20 | 
| 49 | weather_precipitation_toulouse_future_24h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0641 | 0.228 | 0.00 | 0.00 | 2.20 | 
| 50 | weather_wind_speed_10m_toulouse_future_1h | Float32 | False | 0 (0.0%) | 668 (66.8%) | 13.1 | 6.86 | 0.360 | 12.3 | 39.5 | 
| 51 | weather_wind_speed_10m_toulouse_future_24h | Float32 | False | 0 (0.0%) | 669 (66.9%) | 13.0 | 6.86 | 0.360 | 12.1 | 39.5 | 
| 52 | weather_cloud_cover_toulouse_future_1h | Float32 | False | 0 (0.0%) | 84 (8.4%) | 59.9 | 44.6 | 0.00 | 92.0 | 101. | 
| 53 | weather_cloud_cover_toulouse_future_24h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 61.8 | 44.1 | 0.00 | 98.0 | 101. | 
| 54 | weather_soil_moisture_1_to_3cm_toulouse_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 55 | weather_soil_moisture_1_to_3cm_toulouse_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 56 | weather_relative_humidity_2m_toulouse_future_1h | Float32 | False | 0 (0.0%) | 76 (7.6%) | 62.4 | 19.4 | 22.0 | 60.0 | 98.0 | 
| 57 | weather_relative_humidity_2m_toulouse_future_24h | Float32 | False | 0 (0.0%) | 76 (7.6%) | 63.1 | 19.7 | 22.0 | 61.0 | 98.0 | 
| 58 | weather_temperature_2m_lille_future_1h | Float32 | False | 0 (0.0%) | 226 (22.6%) | 8.43 | 4.71 | -0.850 | 7.65 | 24.5 | 
| 59 | weather_temperature_2m_lille_future_24h | Float32 | False | 0 (0.0%) | 220 (22.0%) | 8.39 | 4.63 | -0.850 | 7.65 | 24.5 | 
| 60 | weather_precipitation_lille_future_1h | Float32 | False | 0 (0.0%) | 17 (1.7%) | 0.0482 | 0.249 | 0.00 | 0.00 | 5.80 | 
| 61 | weather_precipitation_lille_future_24h | Float32 | False | 0 (0.0%) | 18 (1.8%) | 0.0522 | 0.253 | 0.00 | 0.00 | 5.80 | 
| 62 | weather_wind_speed_10m_lille_future_1h | Float32 | False | 0 (0.0%) | 692 (69.2%) | 14.1 | 7.04 | 0.720 | 13.6 | 43.5 | 
| 63 | weather_wind_speed_10m_lille_future_24h | Float32 | False | 0 (0.0%) | 693 (69.3%) | 14.1 | 7.08 | 0.720 | 13.6 | 43.5 | 
| 64 | weather_cloud_cover_lille_future_1h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 49.8 | 43.6 | 0.00 | 32.0 | 101. | 
| 65 | weather_cloud_cover_lille_future_24h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 50.9 | 43.7 | 0.00 | 36.0 | 101. | 
| 66 | weather_soil_moisture_1_to_3cm_lille_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 67 | weather_soil_moisture_1_to_3cm_lille_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 68 | weather_relative_humidity_2m_lille_future_1h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 64.2 | 16.5 | 29.0 | 65.0 | 97.0 | 
| 69 | weather_relative_humidity_2m_lille_future_24h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 64.5 | 16.5 | 29.0 | 65.0 | 97.0 | 
| 70 | weather_temperature_2m_limoges_future_1h | Float32 | False | 0 (0.0%) | 279 (27.9%) | 9.89 | 5.99 | -4.30 | 9.60 | 25.7 | 
| 71 | weather_temperature_2m_limoges_future_24h | Float32 | False | 0 (0.0%) | 277 (27.7%) | 9.79 | 5.90 | -4.30 | 9.50 | 25.7 | 
| 72 | weather_precipitation_limoges_future_1h | Float32 | False | 0 (0.0%) | 25 (2.5%) | 0.0960 | 0.480 | 0.00 | 0.00 | 6.70 | 
| 73 | weather_precipitation_limoges_future_24h | Float32 | False | 0 (0.0%) | 25 (2.5%) | 0.103 | 0.483 | 0.00 | 0.00 | 6.70 | 
| 74 | weather_wind_speed_10m_limoges_future_1h | Float32 | False | 0 (0.0%) | 466 (46.6%) | 7.90 | 4.39 | 0.00 | 6.62 | 21.6 | 
| 75 | weather_wind_speed_10m_limoges_future_24h | Float32 | False | 0 (0.0%) | 474 (47.4%) | 7.94 | 4.40 | 0.00 | 6.83 | 21.6 | 
| 76 | weather_cloud_cover_limoges_future_1h | Float32 | False | 0 (0.0%) | 83 (8.3%) | 54.4 | 45.2 | 0.00 | 69.0 | 100. | 
| 77 | weather_cloud_cover_limoges_future_24h | Float32 | False | 0 (0.0%) | 83 (8.3%) | 56.2 | 45.0 | 0.00 | 79.0 | 100. | 
| 78 | weather_soil_moisture_1_to_3cm_limoges_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 79 | weather_soil_moisture_1_to_3cm_limoges_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 80 | weather_relative_humidity_2m_limoges_future_1h | Float32 | False | 0 (0.0%) | 81 (8.1%) | 68.6 | 23.4 | 20.0 | 71.0 | 100. | 
| 81 | weather_relative_humidity_2m_limoges_future_24h | Float32 | False | 0 (0.0%) | 81 (8.1%) | 69.4 | 23.5 | 20.0 | 72.0 | 100. | 
| 82 | weather_temperature_2m_nantes_future_1h | Float32 | False | 0 (0.0%) | 245 (24.5%) | 9.76 | 5.31 | -2.47 | 10.2 | 22.7 | 
| 83 | weather_temperature_2m_nantes_future_24h | Float32 | False | 0 (0.0%) | 243 (24.3%) | 9.67 | 5.22 | -2.47 | 10.1 | 22.7 | 
| 84 | weather_precipitation_nantes_future_1h | Float32 | False | 0 (0.0%) | 14 (1.4%) | 0.0275 | 0.139 | 0.00 | 0.00 | 2.20 | 
| 85 | weather_precipitation_nantes_future_24h | Float32 | False | 0 (0.0%) | 15 (1.5%) | 0.0328 | 0.157 | 0.00 | 0.00 | 2.20 | 
| 86 | weather_wind_speed_10m_nantes_future_1h | Float32 | False | 0 (0.0%) | 713 (71.3%) | 16.0 | 7.37 | 1.48 | 14.3 | 42.3 | 
| 87 | weather_wind_speed_10m_nantes_future_24h | Float32 | False | 0 (0.0%) | 720 (72.0%) | 16.1 | 7.48 | 1.48 | 14.5 | 42.3 | 
| 88 | weather_cloud_cover_nantes_future_1h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 49.7 | 45.0 | 0.00 | 32.0 | 100. | 
| 89 | weather_cloud_cover_nantes_future_24h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 51.2 | 44.9 | 0.00 | 47.0 | 100. | 
| 90 | weather_soil_moisture_1_to_3cm_nantes_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 91 | weather_soil_moisture_1_to_3cm_nantes_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 92 | weather_relative_humidity_2m_nantes_future_1h | Float32 | False | 0 (0.0%) | 59 (5.9%) | 72.8 | 15.7 | 39.0 | 74.0 | 98.0 | 
| 93 | weather_relative_humidity_2m_nantes_future_24h | Float32 | False | 0 (0.0%) | 59 (5.9%) | 72.9 | 15.8 | 39.0 | 74.0 | 98.0 | 
| 94 | weather_temperature_2m_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 236 (23.6%) | 9.53 | 4.83 | -0.563 | 9.04 | 26.2 | 
| 95 | weather_temperature_2m_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 230 (23.0%) | 9.46 | 4.74 | -0.563 | 9.04 | 26.2 | 
| 96 | weather_precipitation_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 21 (2.1%) | 0.0675 | 0.246 | 0.00 | 0.00 | 2.80 | 
| 97 | weather_precipitation_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 25 (2.5%) | 0.0925 | 0.349 | 0.00 | 0.00 | 4.30 | 
| 98 | weather_wind_speed_10m_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 556 (55.6%) | 10.3 | 5.50 | 0.509 | 9.69 | 29.9 | 
| 99 | weather_wind_speed_10m_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 558 (55.8%) | 10.3 | 5.45 | 0.509 | 9.69 | 29.9 | 
| 100 | weather_cloud_cover_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 85 (8.5%) | 64.0 | 42.9 | 0.00 | 99.0 | 100. | 
| 101 | weather_cloud_cover_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 84 (8.4%) | 65.3 | 42.8 | 0.00 | 100. | 100. | 
| 102 | weather_soil_moisture_1_to_3cm_strasbourg_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 103 | weather_soil_moisture_1_to_3cm_strasbourg_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 104 | weather_relative_humidity_2m_strasbourg_future_1h | Float32 | False | 0 (0.0%) | 70 (7.0%) | 65.1 | 17.3 | 29.0 | 66.0 | 98.0 | 
| 105 | weather_relative_humidity_2m_strasbourg_future_24h | Float32 | False | 0 (0.0%) | 71 (7.1%) | 66.0 | 17.8 | 29.0 | 67.0 | 99.0 | 
| 106 | weather_temperature_2m_brest_future_1h | Float32 | False | 0 (0.0%) | 203 (20.3%) | 8.99 | 4.30 | 0.928 | 9.23 | 23.2 | 
| 107 | weather_temperature_2m_brest_future_24h | Float32 | False | 0 (0.0%) | 199 (19.9%) | 8.89 | 4.21 | 0.928 | 9.03 | 23.2 | 
| 108 | weather_precipitation_brest_future_1h | Float32 | False | 0 (0.0%) | 12 (1.2%) | 0.0332 | 0.118 | 0.00 | 0.00 | 1.40 | 
| 109 | weather_precipitation_brest_future_24h | Float32 | False | 0 (0.0%) | 13 (1.3%) | 0.0387 | 0.131 | 0.00 | 0.00 | 1.50 | 
| 110 | weather_wind_speed_10m_brest_future_1h | Float32 | False | 0 (0.0%) | 779 (77.9%) | 18.0 | 8.97 | 0.805 | 16.7 | 44.9 | 
| 111 | weather_wind_speed_10m_brest_future_24h | Float32 | False | 0 (0.0%) | 786 (78.6%) | 18.2 | 9.11 | 0.805 | 17.0 | 44.9 | 
| 112 | weather_cloud_cover_brest_future_1h | Float32 | False | 0 (0.0%) | 91 (9.1%) | 55.2 | 43.4 | 0.00 | 66.0 | 100. | 
| 113 | weather_cloud_cover_brest_future_24h | Float32 | False | 0 (0.0%) | 91 (9.1%) | 55.5 | 43.4 | 0.00 | 68.0 | 100. | 
| 114 | weather_soil_moisture_1_to_3cm_brest_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 115 | weather_soil_moisture_1_to_3cm_brest_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 116 | weather_relative_humidity_2m_brest_future_1h | Float32 | False | 0 (0.0%) | 57 (5.7%) | 72.6 | 13.6 | 43.0 | 74.0 | 99.0 | 
| 117 | weather_relative_humidity_2m_brest_future_24h | Float32 | False | 0 (0.0%) | 57 (5.7%) | 72.9 | 13.6 | 43.0 | 75.0 | 99.0 | 
| 118 | weather_temperature_2m_bayonne_future_1h | Float32 | False | 0 (0.0%) | 247 (24.7%) | 12.2 | 5.01 | -0.202 | 12.1 | 29.4 | 
| 119 | weather_temperature_2m_bayonne_future_24h | Float32 | False | 0 (0.0%) | 241 (24.1%) | 12.1 | 4.89 | -0.202 | 12.0 | 29.4 | 
| 120 | weather_precipitation_bayonne_future_1h | Float32 | False | 0 (0.0%) | 26 (2.6%) | 0.0919 | 0.420 | 0.00 | 0.00 | 4.40 | 
| 121 | weather_precipitation_bayonne_future_24h | Float32 | False | 0 (0.0%) | 29 (2.9%) | 0.109 | 0.468 | 0.00 | 0.00 | 5.40 | 
| 122 | weather_wind_speed_10m_bayonne_future_1h | Float32 | False | 0 (0.0%) | 537 (53.7%) | 10.1 | 5.11 | 0.509 | 9.00 | 33.3 | 
| 123 | weather_wind_speed_10m_bayonne_future_24h | Float32 | False | 0 (0.0%) | 548 (54.8%) | 10.4 | 5.45 | 0.509 | 9.11 | 33.3 | 
| 124 | weather_cloud_cover_bayonne_future_1h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 61.4 | 44.2 | -1.00 | 97.0 | 100. | 
| 125 | weather_cloud_cover_bayonne_future_24h | Float32 | False | 0 (0.0%) | 87 (8.7%) | 62.4 | 44.1 | -1.00 | 100. | 100. | 
| 126 | weather_soil_moisture_1_to_3cm_bayonne_future_1h | Float32 | False | 1000 (100.0%) | ||||||
| 127 | weather_soil_moisture_1_to_3cm_bayonne_future_24h | Float32 | False | 1000 (100.0%) | ||||||
| 128 | weather_relative_humidity_2m_bayonne_future_1h | Float32 | False | 0 (0.0%) | 70 (7.0%) | 70.5 | 16.1 | 25.0 | 72.0 | 98.0 | 
| 129 | weather_relative_humidity_2m_bayonne_future_24h | Float32 | False | 0 (0.0%) | 69 (6.9%) | 71.0 | 15.9 | 25.0 | 72.0 | 98.0 | 
| 130 | cal_hour_of_day_future_1h | Int8 | False | 0 (0.0%) | 24 (2.4%) | 11.5 | 6.90 | 0.00 | 11.0 | 23.0 | 
| 131 | cal_hour_of_day_future_24h | Int8 | False | 0 (0.0%) | 24 (2.4%) | 11.5 | 6.90 | 0.00 | 11.0 | 23.0 | 
| 132 | cal_day_of_week_future_1h | Int8 | False | 0 (0.0%) | 7 (0.7%) | 4.02 | 1.99 | 1.00 | 4.00 | 7.00 | 
| 133 | cal_day_of_week_future_24h | Int8 | False | 0 (0.0%) | 7 (0.7%) | 4.01 | 2.00 | 1.00 | 4.00 | 7.00 | 
| 134 | cal_day_of_year_future_1h | Int16 | True | 0 (0.0%) | 42 (4.2%) | 109. | 12.0 | 89.0 | 109. | 130. | 
| 135 | cal_day_of_year_future_24h | Int16 | True | 0 (0.0%) | 42 (4.2%) | 110. | 12.0 | 90.0 | 110. | 131. | 
| 136 | cal_year_future_1h | Int32 | True | 0 (0.0%) | 1 (0.1%) | 2.02e+03 | 0.00 | |||
| 137 | cal_year_future_24h | Int32 | True | 0 (0.0%) | 1 (0.1%) | 2.02e+03 | 0.00 | |||
| 138 | cal_is_holiday_future_1h | Boolean | False | 0 (0.0%) | 2 (0.2%) | |||||
| 139 | cal_is_holiday_future_24h | Boolean | False | 0 (0.0%) | 2 (0.2%) | 
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
Please enable javascript
The skrub table reports need javascript to display correctly. If you are displaying a report in a Jupyter notebook and you see this message, you may need to re-execute the cell or to trust the notebook (button on the top right or "File > Trust notebook").
Let’s build training and evaluation targets for all possible horizons from 1 to 24 hours.
horizons = range(1, 25)
target_column_name_pattern = "load_mw_horizon_{horizon}h"
@skrub.deferred
def build_targets(prediction_time, electricity, horizons):
    return prediction_time.join(
        electricity.with_columns(
            [
                pl.col("load_mw")
                .shift(-h)
                .alias(target_column_name_pattern.format(horizon=h))
                for h in horizons
            ]
        ),
        left_on="prediction_time",
        right_on="time",
    )
targets = build_targets(prediction_time, electricity, horizons)
targets
Show graph
| prediction_time | load_mw | load_mw_horizon_1h | load_mw_horizon_2h | load_mw_horizon_3h | load_mw_horizon_4h | load_mw_horizon_5h | load_mw_horizon_6h | load_mw_horizon_7h | load_mw_horizon_8h | load_mw_horizon_9h | load_mw_horizon_10h | load_mw_horizon_11h | load_mw_horizon_12h | load_mw_horizon_13h | load_mw_horizon_14h | load_mw_horizon_15h | load_mw_horizon_16h | load_mw_horizon_17h | load_mw_horizon_18h | load_mw_horizon_19h | load_mw_horizon_20h | load_mw_horizon_21h | load_mw_horizon_22h | load_mw_horizon_23h | load_mw_horizon_24h | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2021-03-30 00:00:00+00:00 | 4.64e+04 | 4.43e+04 | 4.39e+04 | 4.62e+04 | 5.19e+04 | 5.69e+04 | 5.83e+04 | 5.77e+04 | 5.54e+04 | 5.46e+04 | 5.49e+04 | 5.31e+04 | 5.09e+04 | 4.91e+04 | 4.76e+04 | 4.70e+04 | 4.84e+04 | 5.07e+04 | 5.12e+04 | 4.92e+04 | 4.91e+04 | 5.00e+04 | 4.74e+04 | 4.55e+04 | 4.45e+04 | 
| 2021-03-30 01:00:00+00:00 | 4.43e+04 | 4.39e+04 | 4.62e+04 | 5.19e+04 | 5.69e+04 | 5.83e+04 | 5.77e+04 | 5.54e+04 | 5.46e+04 | 5.49e+04 | 5.31e+04 | 5.09e+04 | 4.91e+04 | 4.76e+04 | 4.70e+04 | 4.84e+04 | 5.07e+04 | 5.12e+04 | 4.92e+04 | 4.91e+04 | 5.00e+04 | 4.74e+04 | 4.55e+04 | 4.45e+04 | 4.24e+04 | 
| 2021-03-30 02:00:00+00:00 | 4.39e+04 | 4.62e+04 | 5.19e+04 | 5.69e+04 | 5.83e+04 | 5.77e+04 | 5.54e+04 | 5.46e+04 | 5.49e+04 | 5.31e+04 | 5.09e+04 | 4.91e+04 | 4.76e+04 | 4.70e+04 | 4.84e+04 | 5.07e+04 | 5.12e+04 | 4.92e+04 | 4.91e+04 | 5.00e+04 | 4.74e+04 | 4.55e+04 | 4.45e+04 | 4.24e+04 | 4.16e+04 | 
| 2021-03-30 03:00:00+00:00 | 4.62e+04 | 5.19e+04 | 5.69e+04 | 5.83e+04 | 5.77e+04 | 5.54e+04 | 5.46e+04 | 5.49e+04 | 5.31e+04 | 5.09e+04 | 4.91e+04 | 4.76e+04 | 4.70e+04 | 4.84e+04 | 5.07e+04 | 5.12e+04 | 4.92e+04 | 4.91e+04 | 5.00e+04 | 4.74e+04 | 4.55e+04 | 4.45e+04 | 4.24e+04 | 4.16e+04 | 4.36e+04 | 
| 2021-03-30 04:00:00+00:00 | 5.19e+04 | 5.69e+04 | 5.83e+04 | 5.77e+04 | 5.54e+04 | 5.46e+04 | 5.49e+04 | 5.31e+04 | 5.09e+04 | 4.91e+04 | 4.76e+04 | 4.70e+04 | 4.84e+04 | 5.07e+04 | 5.12e+04 | 4.92e+04 | 4.91e+04 | 5.00e+04 | 4.74e+04 | 4.55e+04 | 4.45e+04 | 4.24e+04 | 4.16e+04 | 4.36e+04 | 4.86e+04 | 
| 2021-05-10 11:00:00+00:00 | 5.15e+04 | 5.02e+04 | 4.88e+04 | 4.73e+04 | 4.64e+04 | 4.82e+04 | 4.95e+04 | 4.75e+04 | 4.65e+04 | 4.72e+04 | 4.81e+04 | 4.55e+04 | 4.34e+04 | 4.23e+04 | 4.03e+04 | 3.98e+04 | 4.17e+04 | 4.51e+04 | 4.96e+04 | 5.24e+04 | 5.30e+04 | 5.25e+04 | 5.32e+04 | 5.40e+04 | 5.25e+04 | 
| 2021-05-10 12:00:00+00:00 | 5.02e+04 | 4.88e+04 | 4.73e+04 | 4.64e+04 | 4.82e+04 | 4.95e+04 | 4.75e+04 | 4.65e+04 | 4.72e+04 | 4.81e+04 | 4.55e+04 | 4.34e+04 | 4.23e+04 | 4.03e+04 | 3.98e+04 | 4.17e+04 | 4.51e+04 | 4.96e+04 | 5.24e+04 | 5.30e+04 | 5.25e+04 | 5.32e+04 | 5.40e+04 | 5.25e+04 | 5.08e+04 | 
| 2021-05-10 13:00:00+00:00 | 4.88e+04 | 4.73e+04 | 4.64e+04 | 4.82e+04 | 4.95e+04 | 4.75e+04 | 4.65e+04 | 4.72e+04 | 4.81e+04 | 4.55e+04 | 4.34e+04 | 4.23e+04 | 4.03e+04 | 3.98e+04 | 4.17e+04 | 4.51e+04 | 4.96e+04 | 5.24e+04 | 5.30e+04 | 5.25e+04 | 5.32e+04 | 5.40e+04 | 5.25e+04 | 5.08e+04 | 4.90e+04 | 
| 2021-05-10 14:00:00+00:00 | 4.73e+04 | 4.64e+04 | 4.82e+04 | 4.95e+04 | 4.75e+04 | 4.65e+04 | 4.72e+04 | 4.81e+04 | 4.55e+04 | 4.34e+04 | 4.23e+04 | 4.03e+04 | 3.98e+04 | 4.17e+04 | 4.51e+04 | 4.96e+04 | 5.24e+04 | 5.30e+04 | 5.25e+04 | 5.32e+04 | 5.40e+04 | 5.25e+04 | 5.08e+04 | 4.90e+04 | 4.77e+04 | 
| 2021-05-10 15:00:00+00:00 | 4.64e+04 | 4.82e+04 | 4.95e+04 | 4.75e+04 | 4.65e+04 | 4.72e+04 | 4.81e+04 | 4.55e+04 | 4.34e+04 | 4.23e+04 | 4.03e+04 | 3.98e+04 | 4.17e+04 | 4.51e+04 | 4.96e+04 | 5.24e+04 | 5.30e+04 | 5.25e+04 | 5.32e+04 | 5.40e+04 | 5.25e+04 | 5.08e+04 | 4.90e+04 | 4.77e+04 | 4.69e+04 | 
prediction_time
Datetime- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    1,000 (100.0%)
                    
                    
                        This column has a high cardinality (> 40).
- Min | Max
 - 2021-03-30T00:00:00+00:00 | 2021-05-10T15:00:00+00:00
  
load_mw
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.37e+03
 - Median ± IQR
 - 5.06e+04 ± 8.51e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_1h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.37e+03
 - Median ± IQR
 - 5.06e+04 ± 8.48e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_2h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.36e+03
 - Median ± IQR
 - 5.06e+04 ± 8.45e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_3h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.36e+03
 - Median ± IQR
 - 5.06e+04 ± 8.43e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_4h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.36e+03
 - Median ± IQR
 - 5.06e+04 ± 8.43e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_5h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.36e+03
 - Median ± IQR
 - 5.05e+04 ± 8.43e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_6h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.36e+03
 - Median ± IQR
 - 5.05e+04 ± 8.39e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_7h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.36e+03
 - Median ± IQR
 - 5.05e+04 ± 8.39e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_8h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    964 (96.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.08e+04 ± 6.36e+03
 - Median ± IQR
 - 5.05e+04 ± 8.42e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_9h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    964 (96.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.36e+03
 - Median ± IQR
 - 5.05e+04 ± 8.36e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_10h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    964 (96.4%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.37e+03
 - Median ± IQR
 - 5.05e+04 ± 8.38e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_11h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.04e+04 ± 8.44e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_12h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.04e+04 ± 8.44e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_13h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.04e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_14h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.04e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_15h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.04e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_16h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.04e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_17h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_18h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_19h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    966 (96.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_20h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    966 (96.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_21h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    966 (96.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_22h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    965 (96.5%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_23h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    966 (96.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.49e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
load_mw_horizon_24h
Float64- Null values
 - 0 (0.0%)
 - Unique values
 - 
                    966 (96.6%)
                    
                    
                        This column has a high cardinality (> 40).
- Mean ± Std
 - 5.07e+04 ± 6.38e+03
 - Median ± IQR
 - 5.05e+04 ± 8.44e+03
 - Min | Max
 - 3.35e+04 | 6.95e+04
  
No columns match the selected filter: . You can change the column filter in the dropdown menu above.
| 
    
    Column
    
     | 
|---|