BasicPromptingStrategy#

class ragger_duck.prompt.BasicPromptingStrategy(*, llm, retriever, use_retrieved_context=True)#

Prompting strategy for answering a query.

Once we retrieve the context, we request to answer the query using the context. We allow to not use the retrieved context to answer the query.

Parameters:
llmllm instance

The language model to use for the prompting. We expect the model to implement a __call__ method that takes a prompt and returns a response. It should be an “Instruct”-based model.

retrieverretriever instance

The retriever to use for retrieving the context. We expect the retriever to implement a query method.

use_retrieved_contextbool, default=True

Whether to use the retriever to retrieve the context before prompting.

Methods

fit([X, y])

No-op operation, only validate parameters.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_params(**params)

Set the parameters of this estimator.

fit(X=None, y=None)#

No-op operation, only validate parameters.

Parameters:
XNone

This parameter is ignored.

yNone

This parameter is ignored.

Returns:
self

The fitted estimator.

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.