BasicPromptingStrategy#
- class ragger_duck.prompt.BasicPromptingStrategy(*, llm, retriever, use_retrieved_context=True)#
Prompting strategy for answering a query.
Once we retrieve the context, we request to answer the query using the context. We allow to not use the retrieved context to answer the query.
- Parameters:
- llmllm instance
The language model to use for the prompting. We expect the model to implement a
__call__
method that takes a prompt and returns a response. It should be an “Instruct”-based model.- retrieverretriever instance
The retriever to use for retrieving the context. We expect the retriever to implement a
query
method.- use_retrieved_contextbool, default=True
Whether to use the retriever to retrieve the context before prompting.
Methods
fit
([X, y])No-op operation, only validate parameters.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_params
(**params)Set the parameters of this estimator.
- fit(X=None, y=None)#
No-op operation, only validate parameters.
- Parameters:
- XNone
This parameter is ignored.
- yNone
This parameter is ignored.
- Returns:
- self
The fitted estimator.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.