RetrieverReranker#
- class ragger_duck.retrieval.RetrieverReranker(*, retrievers, cross_encoder, min_top_k=None, max_top_k=None, threshold=None, drop_duplicates=True)#
Hybrid retriever (lexical and semantic) followed by a cross-encoder reranker.
We can accept several retrievers in case you want to rerank the results of several retrievers.
- Parameters:
- retrieverslist of retriever instances
The retrievers to use for retrieving the context. We expect the retrievers to implement a
query
method.- cross_encoder
CrossEncoder
Cross-encoder used to rerank the results of the hybrid retriever.
- min_top_kint, default=None
Minimum number of document to retrieve. If None, it is possible to return less than
min_top_k
documents.- max_top_kint, default=None
Maximum number of document to retrieve. If None, all the documents are retrieved.
- thresholdfloat, default=None
Threshold to filter the scores of the
cross_encoder
. If None, the scores are note filtered based on a threshold.- drop_duplicatesbool, default=True
Whether to drop duplicates from the retrieved documents. This step is done right after the retrieval step.
Methods
fit
([X, y])Compute the vocabulary and the idf.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
query
(query)Retrieve the most relevant documents for the query.
set_params
(**params)Set the parameters of this estimator.
- fit(X=None, y=None)#
Compute the vocabulary and the idf.
- Parameters:
- Xlist of str or dict
The input data.
- yNone
This parameter is ignored.
- Returns:
- self
The fitted estimator.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequest
encapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- query(query)#
Retrieve the most relevant documents for the query.
- Parameters:
- querystr
The user query.
- Returns:
- list of str or dict
The list of the most relevant document from the training set.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.