RetrieverReranker#
- class ragger_duck.retrieval.RetrieverReranker(*, retrievers, cross_encoder, min_top_k=None, max_top_k=None, threshold=None, drop_duplicates=True)#
- Hybrid retriever (lexical and semantic) followed by a cross-encoder reranker. - We can accept several retrievers in case you want to rerank the results of several retrievers. - Parameters:
- retrieverslist of retriever instances
- The retrievers to use for retrieving the context. We expect the retrievers to implement a - querymethod.
- cross_encoderCrossEncoder
- Cross-encoder used to rerank the results of the hybrid retriever. 
- min_top_kint, default=None
- Minimum number of document to retrieve. If None, it is possible to return less than - min_top_kdocuments.
- max_top_kint, default=None
- Maximum number of document to retrieve. If None, all the documents are retrieved. 
- thresholdfloat, default=None
- Threshold to filter the scores of the - cross_encoder. If None, the scores are note filtered based on a threshold.
- drop_duplicatesbool, default=True
- Whether to drop duplicates from the retrieved documents. This step is done right after the retrieval step. 
 
 - Methods - fit([X, y])- Compute the vocabulary and the idf. - Get metadata routing of this object. - get_params([deep])- Get parameters for this estimator. - query(query)- Retrieve the most relevant documents for the query. - set_params(**params)- Set the parameters of this estimator. - fit(X=None, y=None)#
- Compute the vocabulary and the idf. - Parameters:
- Xlist of str or dict
- The input data. 
- yNone
- This parameter is ignored. 
 
- Returns:
- self
- The fitted estimator. 
 
 
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - query(query)#
- Retrieve the most relevant documents for the query. - Parameters:
- querystr
- The user query. 
 
- Returns:
- list of str or dict
- The list of the most relevant document from the training set. 
 
 
 - set_params(**params)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 
