APINumPyDocExtractor#
- class ragger_duck.scraping.APINumPyDocExtractor#
Extract text from the API documentation using
numpydoc.To discover the classes and functions, one should provide the path containing the HTML autogenerated pages. Usually, only public API is present in the documentation. For scikit-learn, the documentation is available in the folder
modules/generated.We leverage the structured information provided by
numpydocto create meaningful chunk of information. Notably, every chunk contains the associate class or function import name.Read more in the User Guide.
Methods
fit([X, y])No-op operation, only validate parameters.
fit_transform(X[, y])Fit to data, then transform it.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
set_output(*[, transform])Set output container.
set_params(**params)Set the parameters of this estimator.
transform(X)Extract text from the API documentation.
- fit(X=None, y=None)#
No-op operation, only validate parameters.
- Parameters:
- XNone
This parameter is ignored.
- yNone
This parameter is ignored.
- Returns:
- self
The fitted estimator.
- fit_transform(X, y=None, **fit_params)#
Fit to data, then transform it.
Fits transformer to
Xandywith optional parametersfit_paramsand returns a transformed version ofX.- Parameters:
- Xarray-like of shape (n_samples, n_features)
Input samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_paramsdict
Additional fit parameters.
- Returns:
- X_newndarray array of shape (n_samples, n_features_new)
Transformed array.
- get_metadata_routing()#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRequest
A
MetadataRequestencapsulating routing information.
- get_params(deep=True)#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- set_output(*, transform=None)#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of
transformandfit_transform."default": Default output format of a transformer"pandas": DataFrame output"polars": Polars outputNone: Transform configuration is unchanged
Added in version 1.4:
"polars"option was added.
- Returns:
- selfestimator instance
Estimator instance.
- set_params(**params)#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- transform(X)#
Extract text from the API documentation.
- Parameters:
- X
pathlib.Path The path to the API documentation folder.
- X
- Returns:
- outputlist
A list of dictionaries containing the source and text of the API documentation.