UserGuideDocExtractor#

class ragger_duck.scraping.UserGuideDocExtractor(*, folders_to_exclude=None, chunk_size=300, chunk_overlap=50, n_jobs=None)#

Extract text from the User Guide documentation.

This function can process classes and functions.

Parameters:
folders_to_excludelist of str, default=None

A list of strings corresponding to folders name to exclude from the HTML pages to process.

chunk_sizeint or None, default=300

The size of the chunks to split the text into. If None, the text is not chunked.

chunk_overlapint, default=50

The overlap between two consecutive chunks.

n_jobsint, default=None

The number of jobs to run in parallel. If None, then the number of jobs is set to the number of CPU cores.

Attributes:
text_splitter_langchain.text_splitter.RecursiveCharacterTextSplitter

The text splitter to use to chunk the document. If chunk_size is None, this attribute is None.

Methods

fit([X, y])

No-op operation, only validate parameters.

fit_transform(X[, y])

Fit to data, then transform it.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

set_output(*[, transform])

Set output container.

set_params(**params)

Set the parameters of this estimator.

transform(X)

Extract text from the API documentation.

fit(X=None, y=None)#

No-op operation, only validate parameters.

Parameters:
XNone

This parameter is ignored.

yNone

This parameter is ignored.

Returns:
self

The fitted estimator.

fit_transform(X, y=None, **fit_params)#

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters:
Xarray-like of shape (n_samples, n_features)

Input samples.

yarray-like of shape (n_samples,) or (n_samples, n_outputs), default=None

Target values (None for unsupervised transformations).

**fit_paramsdict

Additional fit parameters.

Returns:
X_newndarray array of shape (n_samples, n_features_new)

Transformed array.

get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

set_output(*, transform=None)#

Set output container.

See Introducing the set_output API for an example on how to use the API.

Parameters:
transform{“default”, “pandas”, “polars”}, default=None

Configure output of transform and fit_transform.

  • "default": Default output format of a transformer

  • "pandas": DataFrame output

  • "polars": Polars output

  • None: Transform configuration is unchanged

Added in version 1.4: "polars" option was added.

Returns:
selfestimator instance

Estimator instance.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

transform(X)#

Extract text from the API documentation.

Parameters:
Xpathlib.Path

The path to the API documentation folder.

Returns:
outputlist

A list of dictionaries containing the source and text of the User Guide documentation.

Examples using ragger_duck.scraping.UserGuideDocExtractor#

Documentation scraping strategies

Documentation scraping strategies